• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 723
  • 168
  • 107
  • 88
  • 27
  • 27
  • 27
  • 27
  • 27
  • 26
  • 25
  • 24
  • 15
  • 11
  • 6
  • Tagged with
  • 1529
  • 421
  • 304
  • 260
  • 209
  • 172
  • 166
  • 164
  • 154
  • 153
  • 153
  • 144
  • 138
  • 104
  • 92
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
471

Features of a heavy-ion-generated-current filament used in modeling single-event burnout of power MOSFETs

Johnson, Gregory Howard, 1965- January 1990 (has links)
Power MOSFETs are often required to operate in a space radiation environment; therefore, they are susceptible to a catastrophic failure mode called single-event burnout. Single-event burnout of power MOSFETs is initiated by the passage of an energetic-heavy ion through the parasitic BJT inherent to the power-MOSFET structure. The electron-hole pairs generated by the ion support a short-lived current source which imposes a base-emitter voltage on the parasitic BJT. If a sufficient base-emitter voltage is imposed, the parasitic BJT enters second breakdown and burnout of the MOSFET occurs. A semi-analytical model has been developed to predict the energy required of the incident ion to initiate burnout. This thesis addresses the portion of this model which relates the energy of the incident ion to the base-emitter voltage imposed on the parasitic BJT. The initial base-emitter potential is determined using image-source techniques.
472

Electrical trimming of diffused single crystal silicon resistors using aluminum/silicon alloying

Lidke, Michael Charles, 1954- January 1990 (has links)
Electrical trim techniques for reducing the value of a trimmable single crystal silicon resistor (trimistor) are presented. Computer-controlled current pulses are used to incrementally decrease the value of the trimistor through metal/silicon alloying. Variations of both single and multipulse current pulses are investigated. Physical mechanisms, based on electron microscopy of trimistors trimmed under various conditions, are hypothesized to explain the observed trim behavior. Threshold currents are dependent on the initial value of the resistor, the applied current density and the trim method. The electrical trim technique for a single trimmable resistor element is optimized. The final resistance values of the trimmed trimistors are shown to be stable provided that a current at or above the threshold current is not applied thereafter. The performance of both N+ and P trim resistors is evaluated over temperature and accelerated operating life.
473

Optimization of dichromated gelatin film coatings for holographic recordings

Kim, Tae Jin, 1960- January 1991 (has links)
Optimization of dichromated gelatin (DCG) film coatings for holographic recording is presented. The Taguchi optimization method is applied to DCG film coatings to obtain high uniformity. Two-level factorial design is used to optimize the emulsion curing conditions for high diffraction efficiency. Film thicknesses ranging from 6.0 to 23.4 mum are obtained with uniformities between 4.0 and 8.0%. Peak diffraction efficiencies between 87.0 and 96.9% are obtained using the optimized curing conditions. A possible holographic formation mechanism is introduced and experimental results for shrinkage and swelling are summarized. Both reflection type substrate mode holograms and polarization selective transmission type holograms are fabricated using optimized films. An improved Brewster angle method is also used to obtain an accurate measurement of the refractive index of DCG films, which are important in the design of holographic optical elements.
474

Deposition characteristics of metal contaminants from HF-based solutions onto wafer surfaces

Hsu, Eugene, 1966- January 1991 (has links)
Metal contamination levels are a growing concern in integrated circuit manufacturing because they degrade electrical performance. This work uses statistical design of experiments to determine deposition characteristics of transition and heavy metal contaminants onto silicon surfaces from process chemicals that are used in wafer cleaning. Copper, gold, molybdenum, silver, lead, chromium, tin, titanium, manganese, and tungsten were added to buffered oxide etchant (BOE or BHF) and hydrofluoric acid (HF) solutions. Wafers were immersed in these solutions and evaluated by total reflection x-ray fluoresence (TXRF) surface analysis. For those metals that are found to deposit from solution, statistical analysis is utilized to develop empirical models which describe the deposition characteristics.
475

Electrode material and geometry effects on the electrical properties of particle traps in a parallel plate plasma etch reactor

Collins, Sean Michael, 1959- January 1993 (has links)
A newly designed Langmuir probe has been evaluated and was used to map the plasma potential near the powered electrode of a plasma etch chamber in 2 dimensions. Various electrode materials and geometries were used in order to investigate the relationship between electrode design and the presence of localized regions of elevated plasma potential. These regions of elevated plasma potential were known to be responsible for the presence of particle clouds suspended in the plasma during operation. A relationship was established between sharp edges on the powered electrode, insulating materials on the electrode and localized elevation in plasma potential. A thin layer of raised plasma potential has also been discovered at the plasma-sheath boundary. Suggestions for electrode design to reduce the presence of particles suspended in the plasma are made.
476

Interplay magnetism and temperature in the large-demensional limits of the Hubbard and t-J models

Stumpf, Michael Peter Helmuth January 1999 (has links)
No description available.
477

Tuning the magnetic properties of Prussian Blue analogues : size control and the effects of external stimuli

Egan, Lindsay January 2009 (has links)
The hetero-bimetallic mixed valence metal polycyanides (Prussian Blue analogues (PBAs)) with formula AxMII[M’III(CN)6]y (where A= alkali-metal cation and M, M’= transition-metal cations respectively) are archetypal examples of molecule-based magnets, exhibiting a wealth of exotic electronic and magnetic behaviours. Similar intriguing electronic and magnetic properties are anticipated in nanoscale structures employing the PBA molecular building block. Herein investigations of multifunctional molecular magnets based on the PBA building block, with varying dimensionalities, are reported. Synthesis and characterisation of a novel family of mixed ferri-ferromagnets, RbNizMn(1-z)[Fe(CN)6] (0<z<1), illustrates how relatively minor changes in chemical composition can induce significant changes in the magnetic properties. Selected members of this series show photo-induced electronic transitions and pressureinduced magnetic pole inversions. The rare phenomenon of a double magnetic pole inversion is observed when FeII is introduced as a third MII ion. PBAs incorporating the Cu2+ ion are studied with the aim of establishing the influence of Jahn-Teller distortions on the photo-induced electron transfer which has been observed in a number of PBAs. X-ray powder diffraction and absorption measurements of CsCu[Fe(CN)6] under laser illumination reveal an unusual and unexpected behaviour, with photo-irradiation initiating a simultaneous reduction of both transition metal centres, which is proposed to occur via a chemical reaction. Superparamagnetic nanoparticles based on the CuII-NC-CrIII and Mn-NC-CrIII moieties are prepared by polymer protected synthesis, a method based upon spatial confinement. Control over the particle size, and consequently magnetic properties, of the isolated polymer-capped nanoparticles is achieved by altering the polymer concentration. The relaxation dynamics of the polymer-capped nanoparticles are studied using AC susceptibility.
478

Instrumentation development for magnetic and structural studies under extremes of pressure and temperature

Giriat, Gaetan January 2012 (has links)
The study of the magnetic and structural properties of matter under extreme conditions is a fast developing field. With the emergence of new techniques and innovative instruments for measuring physical properties, the need for compatible pressure generating devices is constantly growing. The work described in this thesis is focused on development, construction and testing of several high pressure (HP) cells of novel design. One of the cells is intended for single crystal X-ray diffraction (SXD) studies at low temperature (LT) and the other three HP devices are designed for a Magnetic Property Measurement System (MPMS), two of which are suitable for dc susceptibility studies and the other one is aimed at high frequency ac susceptibility measurements. HP crystallographic studies are routinely carried out in diamond anvil cells (DAC) at room temperature while ambient pressure SXD studies are often conducted at LT to reduce atomic vibrations and obtain more precise structural data as well as to study LT phases. Combining HP with LT gives access to a whole new area on the phase diagrams but due to the size of the existing DACs this is generally achieved by cooling down the cells inside a cryostat and it is mainly possible at synchrotrons where dedicated facilities exist. A miniature DAC which can be used with commercially available laboratory cry-flow cooling systems and achieves pressures in excess of 10 GPa has been developed. The design of the pressure cell is based on the turnbuckle principle and therefore it was called TX-DAC. Its dimensions have been minimised using Finite Element Analysis (FEA) and the final version of the cell weighs only 2.4 g. The cell is built around a pair of 600 μm culet Boehler-Almax anvils which have large conical openings for the diffracted beam. The TX-DAC is made of beryllium copper (BeCu) alloy which has good thermal conductivity and allows quick thermal equilibration of the cell. The MPMS from Quantum Design is the most popular instrument for studies of magnetic properties of materials. It is designed to measure ac and dc magnetic susceptibility of sample with detectable signals as low as 10-8 emu. The MPMS has a sample chamber bore of 9 mm in diameter and this puts a constraint on the dimensions of the pressure cells. However, several types of clamp piston-cylinder cells and DACs have been designed for the MPMS. The former are used for measurements at pressure up to 2 GPa and the later can be used for studies at higher pressure. Taking advantage of the turnbuckle principle, a DAC (TM-DAC) and a piston-cylinder cell (TM-PCC) for dc magnetic studies were built. They allow HP measurements to be performed at the full sensitivity of MPMS. Both pressure cells are made of BeCu and their small dimensions combined with symmetrical design is the key to an ideal background signal correction. The TM-DAC is 7 mm long and 7 mm in diameter, it weighs 1.5 g and with 800 μm culet anvils it can generate a sample pressure of 10 GPa. Inherently the sample volume is limited to approximately 10-3 mm3 and the signal corresponding to this volume of some weakly magnetic material remains below the sensitivity of the MPMS. This constraint led us to the development of the TM-PCC – a piston-cylinder variant of the turnbuckle design. With a 4 mm3 sample volume it allows the study of weakly magnetic samples in the range 0-1.9 GPa. The TM-PCC uses two zirconia pistons of 2.5 mm in diameter; it is 10 mm long, 7 mm in diameter and weights 2.7 g. Conventional metallic pressure cells perform well in dc mode however in ac susceptibility measurements, the Eddy currents set in the cells’ body lead to a screening effect which can significantly obscure the signal from the sample. This problem was solved by designing a composite piston-cylinder cell made with Zylon fibre and epoxy resin. The sample is located in the middle of the cell in the 2.5 mm bore and the pressure is transmitted through zirconia pistons. Keeping the metallic parts away from the sample resolves any interference issue. The composite cell performs well in a pressure range of 0-1 GPa. The performance of the pressure cells developed within this project is illustrated by studies of various systems at high pressure.
479

Phase-resolved ferromagnetic resonance studies of thin film ferromagnets

Marcham, Max Ken January 2012 (has links)
Precessional dynamics are exploited in the operation of high frequency magnetic devices such as magnetic disk drives, non reciprocal microwave devices and spin transfer oscillators. The trajectory of the precession and its damping are of crucial importance. This thesis presents the characterisation of a variety of magnetic thin film structures performed with a range of phase sensitive techniques. It is possible to obtain new insight by utilising the chemical and site specificity of X-ray Magnetic Circular Dichroism (XMCD) to isolate the precession in different chemical species or at distinct sites in the crystal structure of a chosen material. X-ray Ferromagnetic Resonance (XFMR) combines XMCD and Ferromagnetic Resonance (FMR) phenomena in a technique capable of measuring the FMR response of an alloy or multilayer with both chemical and site specificity. To complement the XFMR technique a low temperature Time-Resolved Magneto Optical Kerr Effect (TR-MOKE) setup has been developed. This allowed for the characterisation of samples at temperatures in the range 4 K to room temperature. A frequency swept Vector Network Analyser FMR (VNA-FMR) setup was developed to allow for a fast method for determining the resonance condition and damping of a range of ferromagnetic thin film samples. In addition a TR-X-ray Photoemission Electron Microscopy (TR-XPEEM) setup has been established which allows images to be obtained with magnetic contrast. The combination of the above techniques has lead to studies on rare earth capped spin valve free layers and the measurement of spin pumping in industrially relevant spin valves.
480

Selective laser melting of advanced metal alloys for aerospace applications

Jerrard, Peter George Eveleigh January 2011 (has links)
Research focused on the selective laser melting (SLM) of stainless steels and aluminium alloys. For steels, the possibility of creating a magnetically graded material was demonstrated as well as the ability to improve consolidation with austenitic and martensitic stainless steel powder mixtures. Stainless Steel/CoCr hybrid samples were also manufactured and tested to investigate the advantages of functionally graded materials (FGMs). Al alloy research began with examining the requirements for successful Al alloy consolidation in SLM and through experimentation it was found that Al alloys with good welding properties were the best choice: pure Al was found to be completely unsuitable. 6061 Al alloy was then used as a base material to manufacture Al-Cu alloy samples. Single layer SLM samples were produced first, which resulted in recognised Al-Cu microstructures forming. Multilayer Al alloy SLM research resulted in the discovery of the theorised ability to manufacture Al-Cu alloy parts with a nanocrystalline Al matrix with dispersed Al2Cu quasicrystals, resulting in a material comparable to a metal matrix composite that showed excellent corrosion resistance and compressive strength. Finally, a demonstration part was made to test the capability of the SLM process producing an aerospace type geometry using a customised Al alloy. Observations during manufacture and post process analysis showed that Al alloys were susceptible to changes in mechanical properties due to the geometry of the manufactured part.

Page generated in 0.0267 seconds