Spelling suggestions: "subject:"[een] MANIPULATOR"" "subject:"[enn] MANIPULATOR""
81 |
Manipuliatoriaus pavaros su elektroreologiniu skysčiu kūrimas ir tyrimas / Research and development of manipulator drive with electrorheological fluidVarnavičius, Vytis 26 July 2005 (has links)
The research object of this work is to investigate implementation of ERF in manipulators drive systems and independent actuation of manipulator elements by one actuator – electrorheological fluid. In order to achieve these goals the following issues has to be considered in this work: theoretical and experimental investigation on ERF working modes in array and planar manipulators drives; development of principal design schemes of manipulator drive based on ERF; design and analysis of dynamic models of array and planar manipulators drives; research on advantages and disadvantages of using controllable fluids in thin layers of electrodes of manipulator drives.
|
82 |
Nonlinear control of co-operating hydraulic manipulatorsZeng, Hairong 07 December 2007 (has links)
This thesis presents the design, analysis, and numerical and experimental evaluation of nonlinear controllers for co-operation among several hydraulic robots operating in the presence of significant system uncertainties, non-linearities and friction. The designed controllers allow hydraulically driven manipulators to (i) co-operatively handle a rigid object (payload) following a given trajectory, (ii) share the payload and (iii) maintain an acceptable internal force on the object.
A general description of the kinematic and dynamic relations for a hydraulically actuated multi-manipulator system is presented first. The entire mathematical model incorporates object dynamics, robot dynamics, hydraulic actuator functions and friction dynamics. For the purpose of simulations, a detailed numerical simulation program of such a system is also developed, in which two three-link planar robot manipulators resembling the Magnum hydraulic manipulators manufactured by ISE, interact with each other through manipulating a common object.
The regulating control problem is studied next, in which the desired position of the object and the corresponding desired link displacement change step-wise. Initially, a controller is designed based on a backstepping technique, assuming that full knowledge of the dynamics and kinematics of the system is available. The assumption is then relaxed and the control system is analyzed. Based on the analysis, the controller is then modified to account for the uncertainty of the payload, robot dynamic parameters and hydraulic functions.
Next, the regulating controller is extended to a tracking controller, which allows the object to follow a given trajectory and is robust against parameter uncertainties. Additionally, an observer is added to the controller to avoid the need of acceleration feedback.
To investigate the effect of friction force, the above controllers are examined by introducing the most recent and complete LuGre friction model into the system dynamics. The tracking controller is then redesigned to compensate the effect of friction. Observers are designed to observe the immeasurable friction states. Based on the observed friction states and estimated friction parameters, an appropriate friction compensation scheme is designed which does not directly use velocity in order to avoid the need of acceleration feedback by the controller.
Finally, the problem of “explosion of terms” coming from the backstepping method is solved by using the concept of dynamic surface control in which a low pass filter is integrated to avoid model differentiation.
Simulations are carried out for analysis of the control system and verification of the developed controllers. Experimental examinations are performed on an available hydraulic system consisting of two single-axis hydraulic actuators.
|
83 |
Nonlinear control of co-operating hydraulic manipulatorsZeng, Hairong 07 December 2007 (has links)
This thesis presents the design, analysis, and numerical and experimental evaluation of nonlinear controllers for co-operation among several hydraulic robots operating in the presence of significant system uncertainties, non-linearities and friction. The designed controllers allow hydraulically driven manipulators to (i) co-operatively handle a rigid object (payload) following a given trajectory, (ii) share the payload and (iii) maintain an acceptable internal force on the object.
A general description of the kinematic and dynamic relations for a hydraulically actuated multi-manipulator system is presented first. The entire mathematical model incorporates object dynamics, robot dynamics, hydraulic actuator functions and friction dynamics. For the purpose of simulations, a detailed numerical simulation program of such a system is also developed, in which two three-link planar robot manipulators resembling the Magnum hydraulic manipulators manufactured by ISE, interact with each other through manipulating a common object.
The regulating control problem is studied next, in which the desired position of the object and the corresponding desired link displacement change step-wise. Initially, a controller is designed based on a backstepping technique, assuming that full knowledge of the dynamics and kinematics of the system is available. The assumption is then relaxed and the control system is analyzed. Based on the analysis, the controller is then modified to account for the uncertainty of the payload, robot dynamic parameters and hydraulic functions.
Next, the regulating controller is extended to a tracking controller, which allows the object to follow a given trajectory and is robust against parameter uncertainties. Additionally, an observer is added to the controller to avoid the need of acceleration feedback.
To investigate the effect of friction force, the above controllers are examined by introducing the most recent and complete LuGre friction model into the system dynamics. The tracking controller is then redesigned to compensate the effect of friction. Observers are designed to observe the immeasurable friction states. Based on the observed friction states and estimated friction parameters, an appropriate friction compensation scheme is designed which does not directly use velocity in order to avoid the need of acceleration feedback by the controller.
Finally, the problem of “explosion of terms” coming from the backstepping method is solved by using the concept of dynamic surface control in which a low pass filter is integrated to avoid model differentiation.
Simulations are carried out for analysis of the control system and verification of the developed controllers. Experimental examinations are performed on an available hydraulic system consisting of two single-axis hydraulic actuators.
|
84 |
Belief driven autonomous manipulator pose selection for less controlled environmentsWebb, Stephen Scott, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2008 (has links)
This thesis presents a new approach for selecting a manipulator arm configuration (a pose) in an environment where the positions of the work items are not able to be fully controlled. The approach utilizes a belief formed from a priori knowledge, observations and predictive models to select manipulator poses and motions. Standard methods for manipulator control provide a fully specified Cartesian pose as the input to a robot controller which is assumed to act as an ideal Cartesian motion device. While this approach simplifies the controller and makes it more portable, it is not well suited for less-controlled environments where the work item position or orientation may not be completely observable and where a measure of the accuracy of the available observations is required. The proposed approach suggests selecting a manipulator configuration using two types of rating function. When uncertainty is high, configurations are rated by combining a belief, represented by a probability density function, and a value function in a decision theoretic manner enabling selection of the sensor??s motion based on its probabilistic contribution to information gain. When uncertainty is low the mean or mode of the environment state probability density function is utilized in task specific linear or angular distances constraints to map a configuration to a cost. The contribution of this thesis is in providing two formulations that allow joint configurations to be found using non-linear optimization algorithms. The first formulation shows how task specific linear and angular distance constraints are combined in a cost function to enable a satisfying pose to be selected. The second formulation is based on the probabilistic belief of the predicted environment state. This belief is formed by utilizing a Bayesian estimation framework to combine the a priori knowledge with the output of sensor data processing, a likelihood function over the state space, thereby handling the uncertainty associated with sensing in a less controlled environment. Forward models are used to transform the belief to a predicted state which is utilized in motion selection to provide the benefits of a feedforward control strategy. Extensive numerical analysis of the proposed approach shows that using the fed-forward belief improves tracking performance by up to 19%. It is also shown that motion selection based on the dynamically maintained belief reduces time to target detection by up to 50% compared to two other control approaches. These and other results show how the proposed approach is effectively able to utilize an uncertain environment state belief to select manipulator arm configurations.
|
85 |
Programmierbares 3D-Werkstückerkennungssystem für die sensorgeführte Roboterhandhabung /Oliveira Almeida, Carlos de. January 2007 (has links)
Zugl.: Aachen, Techn. Hochsch., Diss., 2007.
|
86 |
Output feedback adaptive control for robot manipulators /Jurkovic, Dragan, January 1900 (has links)
Thesis (M. App. Sc.)--Carleton University, 2005. / Includes bibliographical references (p. 134-136). Also available in electronic format on the Internet.
|
87 |
3D-Bildsystem für die Nanohandhabung im RasterelektronenmikroskopJähnisch, Marco January 2008 (has links)
Zugl.: Oldenburg, Univ., Diss., 2008
|
88 |
Controle H2, H∞ e H2/H∞ aplicados a um robô manipulador subatuado / H2, H∞ and H2/H∞ controls applied to an underactuated manipulator robotPaulo Hiroaqui Ruiz Nakashima 06 July 2001 (has links)
Este trabalho apresenta os resultados da aplicação de três técnicas de controle utilizadas no projeto e implementação do controle de um manipulador subatuado planar de três juntas em série e de elos rígidos, projetado e construído pela Universidade Carnegie Mellon, EUA. Devido ao alto grau de não-linearidade deste sistema, seria muito difícil implementar um controlador H2, H∞ ou H2/H∞ que atuasse sozinho. Assim, propõe-se a utilização de um método de controle combinado: torque computado/H2, H∞ ou H2/H∞. No controle combinado, a porção correspondente ao torque computado lineariza e pré-compensa a dinâmica do modelo da planta nominal, enquanto a porção correspondente ao controle H2, H∞ ou H2/H∞ realiza uma pós-compensação dos erros residuais, que não foram completamente eliminados pelo método torque computado. Testes de acompanhamento de trajetória e testes de robustez são realizados aqui para comprovar a eficiência destes controladores, com resultados de implementação bastante satisfatórios. / This work presents the application results of three control techniques used for the control design and implementation of a serial planar underactuated manipulator with three joints and rigid links, designed and built by the Carnegie Mellon University, USA. Due to the high non-linearity degree of this system, it would be very difficult to implement an H2, H∞ or H2/ H∞ control which would actuate on the system by itself. Therefore, it is proposed a combined control method: computed torque/ H2, H∞ or H2/H∞. In the combined control, the portion corresponding to the computed torque linearizes and pre-compensates the dynamics of the nominal model, while the portion corresponding to the H2, H∞ or H2/H∞ control realizes a pos-compensation of the residual errors, not completely removed by the computed torque method. Trajetory tracking and robustness tests are performed here to demonstrate the efficiency of these controllers, with very satisfatory implementation results.
|
89 |
Controle subótimo de manipuladores subatuados via redundância de atuação / Suboptimal control of underactuacted manipulators via actuation redundancyBenedito Carlos de Oliveira Maciel 21 June 2001 (has links)
Este trabalho apresenta uma metodologia de controle de posição das juntas passivas de um manipulador subatuado de uma maneira subótima. O termo subatuado se refere ao fato de que nem todas as juntas ou graus de liberdade do sistema serem equipados com atuadores, o que ocorre na prática devido a falhas ou como resultado de projeto. As juntas passivas de manipuladores desse tipo são indiretamente controladas pelo movimento das juntas ativas usando as características de acoplamento da dinâmica de manipuladores. A utilização de redundância de atuação das juntas ativas permite a minimização de alguns critérios, como consumo de energia, por exemplo. Apesar da estrutura cinemática de manipuladores subatuados ser idêntica a do totalmente atuado, em geral suas características dinâmicas diferem devido a presença de juntas passivas. Assim, apresentamos a modelagem dinâmica de um manipulador subatuado e o conceito de índice de acoplamento. Este índice é utilizado na seqüência de controle ótimo do manipulador. A hipótese de que o número de juntas ativas seja maior que o número de passivas permite o controle ótimo das juntas passivas, uma vez que na etapa de controle destas há mais entradas (torques nos atuadores das juntas ativas), que elementos a controlar (posição das juntas passivas). Neste ponto reside a contribuição desta tese ao estado da arte, uma vez que não há até o momento publicação que proponha o controle ótimo das juntas passivas neste caso. / This work presents a control methodologie for the position of the passive joints of an underactuated manipulator in a suboptimal way. The term underactuated refers to the fact that not all the joints or degrees of freedom of the system are equipped with actuators, which occurs in practice due to failures or as design result. The passive joints of manipulators like this are indirectly controlled by the motion of the active joints using the dynamic coupling characteristics. The utilization of actuation redundancy of the active joints allows the minimization of some criteria, like energy consumption, for example. Although the kinematic structure of an underactuated manipulator is identical to that of a similar fully actuated one, in general their dynamic characteristics are different due to the presence of passive joints. Thus, we present the dynamic modelling of an underactuated manipulator and the concept of coulpling index. This index is used in the sequence of the optimal conirol of the manipulator. The hipotheses that the number of active joints is greatter than the number of passives (na>np) allows the optimal control of the passive joints, since there are more inputs (torques at the actuators of the active joints), than elements to be controlled (position of the passive joints). At this point resides the contribution of this dissertation to the state of the art, once there is no publication that proposes the optimal control of the passive joints in this case.
|
90 |
Hybrid-Adaptive Switched Control for Robotic Manipulator Interacting with Arbitrary Surface Shapes Under Multi-Sensory GuidanceNakhaeinia, Danial January 2018 (has links)
Industrial robots rapidly gained popularity as they can perform tasks quickly, repeatedly and accurately in static environments. However, in modern manufacturing, robots should also be able to safely interact with arbitrary objects and dynamically adapt their behavior to various situations. The large masses and rigid constructions of industrial robots prevent them from easily being re-tasked. In this context, this work proposes an immediate solution to make rigid manipulators compliant and able to efficiently handle object interactions, with only an add-on module (a custom designed instrumented compliant wrist) and an original control framework which can easily be ported to different manipulators. The proposed system utilizes both offline and online trajectory planning to achieve fully automated object interaction and surface following with or without contact where no prior knowledge of the objects is available.
To minimize the complexity of the task, the problem is formulated into four interaction motion modes: free, proximity, contact and a blend of those. The free motion mode guides the robot towards the object of interest using information provided by a RGB-D sensor. The RGB-D sensor is used to collect raw 3D information on the environment and construct an approximate 3D model of an object of interest in the scene. In order to completely explore the object, a novel coverage path planning technique is proposed to generate a primary (offline) trajectory. However, RGB-D sensors provide only limited accuracy on the depth measurements and create blind spot when it reaches close to surfaces. Therefore, the offline trajectory is then further refined by applying the proximity motion mode and contact motion mode or a blend of them (blend motion mode) that allow the robot to dynamically interact with arbitrary objects and adapt to the surfaces it approaches or touches using live proximity and contact feedback from the compliant wrist.
To achieve seamless and efficient integration of the sensory information and smoothly switch between different interaction modes, an original hybrid switching scheme is proposed that applies a supervisory (decision making) module and a mixture of hard and blend switches to support data fusion from multiple sensing sources by combining pairs of the main motion modes. Experimental results using a CRS-F3 manipulator demonstrate the feasibility and performance of the proposed method.
|
Page generated in 0.0577 seconds