Spelling suggestions: "subject:"[een] METAHEURISTIC OPTIMIZATION"" "subject:"[enn] METAHEURISTIC OPTIMIZATION""
11 |
Optimalizační algoritmy v logistických kombinatorických úlohách / Algorithms for Computerized Optimization of Logistic Combinatorial ProblemsBokiš, Daniel January 2015 (has links)
This thesis deals with optimization problems with main focus on logistic Vehicle Routing Problem (VRP). In the first part term optimization is established and most important optimization problems are presented. Next section deals with methods, which are capable of solving those problems. Furthermore it is explored how to apply those methods to specific VRP, along with presenting some enhancement of those algorithms. This thesis also introduces learning method capable of using knowledge of previous solutions. At the end of the paper, experiments are performed to tune the parameters of used algorithms and to discuss benefit of suggested improvements.
|
12 |
An?lise das medidas de boa e m? diversidade na constru??o de comit?s de classificadores atrav?s de metaheur?sticas de otimiza??o multiobjetivoFeitosa Neto, Antonino Alves 24 August 2012 (has links)
Made available in DSpace on 2014-12-17T15:48:03Z (GMT). No. of bitstreams: 1
AntonioAFN_DISSERT.pdf: 3187796 bytes, checksum: c8d44014d0b75e991f4f3b3473a8dcd5 (MD5)
Previous issue date: 2012-08-24 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / Committees of classifiers may be used to improve the accuracy of classification systems, in other words, different classifiers used to solve the same problem can be combined for creating a system of greater accuracy, called committees of classifiers. To that this to succeed is necessary that the classifiers make mistakes on different objects of the problem so that the errors of a classifier are ignored by the others correct classifiers when applying the method of combination of the committee. The characteristic of classifiers of err on different objects is called diversity. However, most measures of diversity could not describe this importance. Recently, were proposed two measures of the diversity (good and bad diversity) with the aim of helping to generate more accurate committees. This paper performs an experimental analysis of these measures applied directly on the building of the committees of classifiers. The method of construction adopted is modeled as a search problem by the set of characteristics of the databases of the problem and the best set of committee members in order to find the committee of classifiers to produce the most accurate classification. This problem is solved by metaheuristic optimization techniques, in their mono and multi-objective versions. Analyzes are performed to verify if use or add the measures of good diversity and bad diversity in the optimization objectives creates more accurate committees. Thus, the contribution of this study is to determine whether the measures of good diversity and bad diversity can be used in mono-objective and multi-objective optimization techniques as optimization objectives for building committees of classifiers more accurate than those built by the same process, but using only the accuracy classification as objective of optimization / Comit?s de classificadores podem ser empregados para melhorar a acur?cia de sistemas de classifica??o, ou seja, diferentes classificadores aplicados ? solu??o de um mesmo problema podem ser combinados gerando um sistema de maior acur?cia, denominado de comit?s de classificadores. Para que se obtenha sucesso ? necess?rio que os classificadores apresentem erros em diferentes objetos do problema para que assim os erros de um classificador sejam suprimidos pelo acerto dos demais na aplica??o do m?todo de combina??o do comit?. A caracter?stica dos classificadores de errarem em objetos diferentes ? denominada de diversidade. No entanto, as maiorias das medidas de diversidade n?o conseguiam descrever essa import?ncia. Recentemente, foram propostas duas medidas de diversidade (boa e m? diversidade) as medidas de boa e m? diversidade com o objetivo de auxiliar a gera??o de comit?s mais acurados. Este trabalho efetua uma an?lise experimental dessas medidas aplicadas diretamente na constru??o de comit?s de classificadores. O m?todo de constru??o adotado ? modelado como um problema de busca pelo melhor conjunto de caracter?sticas das bases de dados do problema e pelo melhor conjunto de membros do comit? a fim de encontrar o comit? de classificadores que apresente ? maior acur?cia de classifica??o. Esse problema ? resolvido atrav?s de t?cnicas de otimiza??o metaheur?sticas, nas vers?es mono e multiobjetivo. S?o efetuadas an?lises estat?sticas para verificar se usar ou adicionar as medidas de boa e m? diversidade como objetivos de otimiza??o resulte comit?s mais acurados. Assim, a contribui??o desse trabalho ? determinar se as medidas de boa e m? diversidade podem ser utilizadas em t?cnicas de otimiza??o mono e multiobjetivo como objetivos de otimiza??o para constru??o de comit?s de classificadores mais acurados que aqueles constru?dos pelo mesmo processo, por?m utilizando somente a acur?cia de classifica??o como objetivo de otimiza??o
|
13 |
Stratégies de commande distribuée pour l’optimisation de la production des fermes éoliennes / Distributed control strategies for wind farm power production optimizationGionfra, Nicolo 15 March 2018 (has links)
Les travaux de thèse s’intéressent au réglage de la puissance active injectée dans le réseau, ce qui représente aujourd'hui l'une des problématiques principales du pilotage des parcs éoliens participant à la gestion du réseau. Dans le même temps, l'un des buts reste de maximiser la puissance extraite du vent en considérant les effets de couplage aérodynamique entre les éoliennes.La structure du contrôle-commande choisie est de type hiérarchisée et distribuée. Dans la première partie de la thèse, les travaux portent sur la commande de la turbine d'une éolienne autour des points de fonctionnement classiques mais également autour des points à puissance extraite réduite. En fait, cela relève d’une condition de fonctionnement nécessaire pour l'atteinte des objectifs imposés au pilotage d'un parc éolien.Dans la deuxième partie, le problème du contrôle à l'échelle d'un parc est posé sous la forme d'une optimisation distribuée parmi les turbines. Deux nouveaux algorithmes d'optimisation métaheuristique sont proposés et leur performance testée sur différents exemples de parcs éoliens. Les deux algorithmes s'appuient sur la méthode d'optimisation par essaim particulaire, qui est ici modifiée et adaptée pour les cas d'application aux systèmes multi agents. L'architecture de contrôlecommande globale est enfin évaluée en considérant les dynamiques des turbines contrôlées. Les simulations effectuées montrent des gains potentiels significatifs en puissance.Finalement, dans la troisième partie de la thèse, l'introduction d'une nouvelle étape de coopération au niveau des contrôleurs locaux des turbines, par l'utilisation de la technique de contrôle par consensus, permet d'améliorer les performances du système global. / In this PhD work we focus on the wind farm (WF) active power control since some of the new set grid requirements of interest can be expressed as specifications on its injection in the electric grid. Besides, one of our main objectives is related to the wind farm power maximization problem under the presence on non-negligible wake effect. The chosen WF control architecture has a two-layer hierarchical distributed structure. First of all, the wind turbine (WT) control is addressed. Here, a nonlinear controller lets a WT work in classic zones of functioning as well as track general deloaded power references. This last feature is a necessary condition to accomplish the WF control specifications. Secondly, the high level WF control problem is formulated as an optimization problem distributed among the WTs. Two novel distributed optimization algorithms are proposed, and their performance tested on different WF examples. Both are based on the well-known particle swarm optimization algorithm, which we modify and extend to be applicable in the multi-agent system framework. Finally, the overall WF control is evaluated by taking into account the WTs controlled dynamics. Simulations show potential significant power gains. Eventually, the introduction of a new control level in the hierarchical structure between the WF optimization and the WTs controllers is proposed. The idea is to let further cooperation among the WT local controllers, via a consensusbased technique, to enhance the overall system performance.
|
14 |
[pt] PLANEJAMENTO DA EXPANSÃO DA TRANSMISSÃO COM CRITÉRIOS DE SEGURANÇA VIA ALGORITMO GENÉTICO ESPECIALIZADO / [en] TRANSMISSION EXPANSION PLANNING WITH SECURITY CRITERIA VIA SPECIALIZED GENETIC ALGORITHMIAMBERG SOUZA DA SILVA 12 January 2021 (has links)
[pt] A solução do problema de planejamento da expansão da transmissão (PET)
tem por objetivo geral identificar reforços a serem construídos na rede de forma a
garantir a adequada interligação entre carga e geração, previstos para um determinado
horizonte de estudo. No processo de solução desse problema, busca-se manter
o equilíbrio ótimo entre os custos envolvidos (investimento e operação) e os
níveis de qualidade e desempenho na operação do sistema reforçado. Nesse sentido,
é proposta nesta dissertação de mestrado uma ferramenta de otimização especializada
para solução do problema PET, a qual é baseada na técnica metaheurística
Algoritmo Genético. A ferramenta proposta, denominada Algoritmo Genético
Especializado (AGE-PET), faz uso de informações heurísticas fundamentadas em
análises atualizadas de fluxo de potência da rede realizadas durante o processo
evolutivo de solução do problema. Essas informações heurísticas são traduzidas
por meio de índices de sensibilidade, os quais são integrados aos operadores genéticos
inerentes à ferramenta, conduzindo a solução do problema na direção de planos
de expansão de boa qualidade. Para análise e validação da metodologia proposta,
é solucionado o problema PET estático de longo prazo, considerando o modelo
linearizado DC com perdas ôhmicas e atendimento do critério de segurança
N-1 para a rede de transmissão. Sistemas elétricos de transmissão com diferentes
características e dimensões, incluindo um subsistema atual da rede interligada
brasileira, são empregados nos estudos realizados. / [en] The main goal in the solution of the transmission expansion planning (TEP)
is to identify reinforcements to be built in the network in order to guarantee the
adequate interconnection between load and electric power generation, both foreseen
for a given future planning horizon. In the process of solving this problem,
the aim is to maintain the optimal balance between the costs involved (investment
and operation) and the levels of quality and performance in the operation of the
reinforced system. Thus, it is proposed in this dissertation a specialized optimization
tool for solving the TEP problem, which is based on the metaheuristic Genetic
Algorithm technique. The proposed tool, called Specialized Genetic Algorithm
(SGA-TEP), makes use of heuristic information based on updated network power
flow analyses carried out during the evolutionary process of solving the problem.
This heuristic information is translated by means of sensitivity indices, which are
integrated with the genetic operators inherent to the tool, leading to the solution of
the problem in the direction of good quality expansion plans. For analysis and
validation of the proposed methodology, the long-term static TEP problem is
solved, considering the linearized DC model with ohmic losses and the compliance
of the N-1 security criterion for the transmission network. Electric transmission
systems with different characteristics and dimensions, including a recent
subsystem of the Brazilian interconnected grid, are used in the case studies.
|
Page generated in 0.0554 seconds