• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 90
  • 42
  • 14
  • 10
  • 6
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 205
  • 205
  • 205
  • 52
  • 47
  • 42
  • 40
  • 34
  • 32
  • 29
  • 26
  • 24
  • 23
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Taxiway Aircraft Traffic Scheduling: A Model and Solution Algorithms

Tian, Chunyu 2011 August 1900 (has links)
With the drastic increase in the demand for air travel, taxiway aircraft traffic scheduling is becoming increasingly important in managing air traffic. In order to reduce traffic congestion on taxiways, this thesis proposes a tool for air traffic controllers to use in decision making: a taxiway air traffic model developed using Mixed Integer Programming (MIP) that can be applied to a rolling time horizon. The objective of this model is to minimize the total taxi time, and the output is a schedule and route for each aircraft. This MIP model assumes that only the origin and destination of each aircraft is fixed; due to some uncertain factors in the air arrival and departure process, it allows for the departure time and arrival time to vary within a certain time window. This MIP model features aircraft type, and also incorporates runway crossings and runway separations. The model is programmed using C++ and Solved in CPLEX 12.1. Runways 26R and 26L of George Bush International Airport are used to find solutions. The author presents a rolling horizon method by dividing the large scheduling issue into smaller time interval problems according to the scheduled times of departure or arrival. A bound is also proposed based on the discretized time interval problems. By using partial data from George Bush International Airport (IAH), solutions are obtained. The results are compared with the bound and show fairly high optimality. Compared with the previous research, this thesis presents a model with more flexibility by considering different operations. By using the rolling horizon method, the problem is broken into smaller units that can be solved efficiently without losing much optimality.
2

Parallel solution of linear programs

Smith, Edmund January 2013 (has links)
The factors limiting the performance of computer software periodically undergo sudden shifts, resulting from technological progress, and these shifts can have profound implications for the design of high performance codes. At the present time, the speed with which hardware can execute a single stream of instructions has reached a plateau. It is now the number of instruction streams that may be executed concurrently which underpins estimates of compute power, and with this change, a critical limitation on the performance of software has come to be the degree to which it can be parallelised. The research in this thesis is concerned with the means by which codes for linear programming may be adapted to this new hardware. For the most part, it is codes implementing the simplex method which will be discussed, though these have typically lower performance for single solves than those implementing interior point methods. However, the ability of the simplex method to rapidly re-solve a problem makes it at present indispensable as a subroutine for mixed integer programming. The long history of the simplex method as a practical technique, with applications in many industries and government, has led to such codes reaching a great level of sophistication. It would be unexpected in a research project such as this one to match the performance of top commercial codes with many years of development behind them. The simplex codes described in this thesis are, however, able to solve real problems of small to moderate size, rather than being confined to random or otherwise artificially generated instances. The remainder of this thesis is structured as follows. The rest of this chapter gives a brief overview of the essential elements of modern parallel hardware and of the linear programming problem. Both the simplex method and interior point methods are discussed, along with some of the key algorithmic enhancements required for such systems to solve real-world problems. Some background on the parallelisation of both types of code is given. The next chapter describes two standard simplex codes designed to exploit the current generation of hardware. i6 is a parallel standard simplex solver capable of being applied to a range of real problems, and showing exceptional performance for dense, square programs. i8 is also a parallel, standard simplex solver, but now implemented for graphics processing units (GPUs).
3

Robust optimization with applications in maritime inventory routing

Zhang, Chengliang 27 May 2016 (has links)
In recent years, the importance of incorporating uncertainty into planning models for logistics and transportation systems has been widely recognized in the Operations Research and transportation science communities. Maritime transportation, as a major mode of transport in the world, is subject to a wide range of disruptions at the strategic, tactical and operational levels. This thesis is mainly concerned with the development of robustness planning strategies that can mitigate the effects of some major types of disruptions for an important class of optimization problems in the shipping industry. Such problems arise in the creation and negotiation of long-term delivery contracts with customers who require on-time deliveries of high-value goods throughout the year. In this thesis, we consider the disruptions that can increase travel times between ports and ultimately affect one or more scheduled deliveries to the customers. Computational results show that our integrated solution procedure and robustness planning strategies can generate delivery plans that are both economical as well as robust against uncertain disruptions.
4

Sugarcane harvest logistics

Lamsal, Kamal 01 July 2014 (has links)
Sugar mills represent significant capital investments. To maintain appropriate returns on their investment, sugar companies seek to run the mills at capacity over the sugarcane harvest season. Because the sugar content of cane degrades considerably once it is cut, maintaining inventories of cut cane is undesirable. Instead, mills want to coordinate the arrival of cut cane with production. We present exact solution approaches exploiting special structure of the sugarcane harvest logistics problem in Brazil and the United States.
5

Unit Commitment Methods to Accommodate High Levels of Wind Generation

Melhorn, Alexander Charles 01 August 2011 (has links)
The United State’s renewable portfolio standards call for a large increase of renewable energy and improved conservation efforts over today’s current system. Wind will play a ma jor role in meeting the renewable portfolio standards. As a result, the amount of wind capacity and generation has been growing exponentially over the past 10 to 15 years. The proposed unit commitment method integrates wind energy into a scheduable resource while keeping the formulation simple using mixed integer programming. A reserve constraint is developed and added to unit commitment giving the forecasted wind energy an effective cost. The reserve constraint can be scaled based on the needs of the system: cost, reliability, or the penetration of wind energy. The results show that approximately 24% of the load can be met in the given test system, while keeping a constant reliability before and after wind is introduced. This amount of wind will alone meet many of the renewable portfolio standards in the United States.
6

Optimized staffing between product lines for a technical support center

Locklear, John Michael January 1900 (has links)
Master of Agribusiness / Department of Agricultural Economics / Jason S. Bergtold / Technical support for products after the sale is commonplace in today’s businesses. Original Equipment Manufacturers (OEMs) provide technical support to their dealer channel for resolution of complex product issues. Technical support staffing levels can vary by product type, product complexity, and production volumes, and case volumes. This research seeks a better understanding of appropriate staffing levels between three product lines for one OEM. The objective of this paper is to develop a model for monthly and weekly average case volumes for the three product lines, based off of historical case volume data. This data is used to predict a product line’s (platform’s) workload based off the month of the year. The output of each platform’s monthly case volume is then used in an optimization model to determine optimal staffing levels for each platform, based off the time of the year. The models developed for each platform use a linear relationship which regresses workload on a set of binary variable for the months of the year. Each of the models developed provided statistically significant coefficients for months which contain the platform’s highest workload. The outputs from these models are used in a mixed integer nonlinear programming optimization model to determine staff level of full time equivalent (FTE) employees at each platform. Each of the three scenarios utilized in this research provide similar trends and staffing levels for each of the three product lines. Results of this research are of interest for the management of technical support staffing.
7

A comparison of sequencing formulations in a constraint generation procedure for avionics scheduling

Boberg, Jessika January 2017 (has links)
This thesis compares different mixed integer programming (MIP) formulations for sequencing of tasks in the context of avionics scheduling. Sequencing is a key concern in many discrete optimisation problems, and there are numerous ways of accomplishing sequencing with different MIP formulations. A scheduling tool for avionic systems has previously been developed in a collaboration between Saab and Linköping University. This tool includes a MIP formulation of the scheduling problem where one of the model components has the purpose to sequence tasks. In this thesis, this sequencing component is replaced with other MIP formulations in order to study whether the computational performance of the scheduling tool can be improved. Different scheduling instances and objective functions have been used when performing the tests aiming to evaluate the performances, with the computational times of the entire avionic scheduling model determining the success of the different MIP formulations for sequencing. The results show that the choice of MIP formulation makes a considerable impact on the computational performance and that a significant improvement can be achieved by choosing the most suitable one.
8

Mixed integer programming with dose-volume constraints in intensity-modulated proton therapy

Zhang, Pengfei, Fan, Neng, Shan, Jie, Schild, Steven E., Bues, Martin, Liu, Wei 09 1900 (has links)
Background: In treatment planning for intensity-modulated proton therapy (IMPT), we aim to deliver the prescribed dose to the target yet minimize the dose to adjacent healthy tissue. Mixed-integer programming (MIP) has been applied in radiation therapy to generate treatment plans. However, MIP has not been used effectively for IMPT treatment planning with dose-volume constraints. In this study, we incorporated dose-volume constraints in an MIP model to generate treatment plans for IMPT. Methods: We created a new MIP model for IMPT with dose volume constraints. Two groups of IMPT treatment plans were generated for each of three patients by using MIP models for a total of six plans: one plan was derived with the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method while the other plan was derived with our MIP model with dose-volume constraints. We then compared these two plans by dose-volume histogram (DVH) indices to evaluate the performance of the new MIP model with dose-volume constraints. In addition, we developed a model to more efficiently find the best balance between tumor coverage and normal tissue protection. Results: The MIP model with dose-volume constraints generates IMPT treatment plans with comparable target dose coverage, target dose homogeneity, and the maximum dose to organs at risk (OARs) compared to treatment plans from the conventional quadratic programming method without any tedious trial-and-error process. Some notable reduction in the mean doses of OARs is observed. Conclusions: The treatment plans from our MIP model with dose-volume constraints can meetall dose-volume constraints for OARs and targets without any tedious trial-and-error process. This model has the potential to automatically generate IMPT plans with consistent plan quality among different treatment planners and across institutions and better protection for important parallel OARs in an effective way.
9

A Methodology for Supply Inventory Management for Hospital Nursing UnitsConsidering Service Level Constraint

Chakrabarty, Nayan 17 September 2020 (has links)
No description available.
10

Biomass-To-Biofuels' Supply Chain Design And Management

Acharya, Ambarish Madhukar 10 December 2010 (has links)
The goal of this dissertation is to study optimization models that integrate location, production, inventory and transportation decisions for industrial products and apply the knowledge gained to develop supply chains for agricultural products (biomass). We estimate unit cost for the whole biomass-to-biofuels’ supply chain which is the per gallon cost for biofuels up till it reaches the markets. The unit cost estimated is the summation of location, production, inventory holding, and transportation costs. In this dissertation, we focus on building mathematical models for designing and managing the biomass-to-biofuels’ supply chains. The computational complexity of the developed models makes it advisable to use heuristic solution procedures. We develop a Lagrangean decomposition heuristic. In our heuristic, we divide the problem into two sub-problems, sub-problem 1 is a transportation problem and sub-problem 2 is a combination of a capacitated facility location and production planning problem. Subproblem 2 is further divided by commodities. The algorithm is tested for a number of different scenarios. We also develop a decision support system (DSS) for the biomass-to-biofuels’ supply chain. In our DSS, the main problem is divided into four easy-to-solve supply chain problems. These problems were determined based on our knowledge of supply chain and discussions with the experts from the biomass and biofuels’ sector. The DSS is coded using visual basic applications (VBA) for Excel and has a simple user interface which assists the user in running different types of supply chain problems and provides results in form of reports which are easy to understand.

Page generated in 0.0493 seconds