• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 9
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 69
  • 69
  • 69
  • 69
  • 24
  • 20
  • 18
  • 12
  • 12
  • 12
  • 12
  • 12
  • 10
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Caching-based Multipath Routing in Mobile Ad Hoc Networks

Joshi, Vineet 21 April 2009 (has links)
No description available.
12

Design and Implementation of the FINS Framework: Flexible Internetwork Stack

Reed, Jonathan Michael 29 June 2014 (has links)
This thesis describes the Flexible Internetwork Stack (FINS) Framework, an open-source tool to facilitate experimental research in wireless networks on multiple platforms. The FINS Framework uses a module-based architecture that allows cross-layer behavior and runtime reconfiguration of the protocol stack. Version 1.0 of the framework makes use of existing physical and data link layer functionality, while enabling modifications to the stack at the network layer and above, or even the implementation of a clean-slate, non-layered protocol architecture. Protocols, stubs for communicating with intact layers, and management and supervisory functions are implemented as FINS Framework modules, interconnected by a central switch. This thesis describes the FINS Framework architecture, presents an initial assessment along with experiments on Android and Ubuntu enabled by the tool, and documents an intuitive mechanism for transparently intercepting socket calls that maintains efficiency and flexibility. / Master of Science
13

Content Dissemination in Mobile Ad Hoc Networks

Patra, Tapas Kumar January 2016 (has links) (PDF)
In this thesis, we are concerned with content dissemination in mobile ad hoc networks. The scope of content dissemination is limited by network capacity, and sometimes the price to be paid for securing faster delivery. In the first part of the thesis, we address the issue of finding the maximum throughput that a mobile ad-hoc network can support. We have assumed that there is no price involved, and all nodes work as a team. The problem of determining the capacity region has long been known to be NP-hard even for stationary nodes. Mobility introduces an additional dimension of complexity because nodes now also have to decide when they should initiate route discovery. Since route discovery involves communication and computation overhead, it should not be invoked very often. On the other hand, mobility implies that routes are bound to become stale, resulting in sub-optimal performance if routes are not updated. We attempt to gain some understanding of these effects by considering a simple one-dimensional network model. The simplicity of our model allows us to use stochastic dynamic programming (SDP) to find the maximum possible network throughput with ideal routing and medium access control (MAC) scheduling. Using the optimal value as a benchmark, we also propose and evaluate the performance of a simple threshold-based heuristic. Unlike the optimal policy which requires considerable state information, the proposed heuristic is simple to implement and is not overly sensitive to the threshold value. We find empirical conditions for our heuristic to be near-optimal. Also, network scenarios when our heuristic does not perform very well are analyzed. We provide extensive numerical analysis and simulation results for different parameter settings of our model. Interestingly, we observe that in low density network the average throughput can first decrease with mobility, and then increase. This motivates us to study a mobile ad-hoc network when it is sparse and in a generalized environment, such as when movement of nodes is in a two-dimension plane. Due to sparseness, there are frequent disruptions in the connections and there may not be any end-to-end connection for delivery. The mobility of nodes may be used for carrying the forwarded message to the destination. This network is also known as a delay tolerant network. In the rest part of the thesis, we consider the relay nodes to be members of a group that charges a price for assisting in message transportation. First, we solve the problem of how to select first relay node when only one relay node can be chosen from a given number of groups. Next, we solve two problems, namely price-constrained delay minimization, and delay-constrained price optimization.
14

Performance analysis of new algorithms for routing in mobile ad-hoc networks : the development and performance evaluation of some new routing algorithms for mobile ad-hoc networks based on the concepts of angle direction and node density

Elazhari, Mohamed S. January 2010 (has links)
Mobile Ad hoc Networks (MANETs) are of great interest to researchers and have become very popular in the last few years. One of the great challenges is to provide a routing protocol that is capable of offering the shortest and most reliable path in a MANET in which users are moving continuously and have no base station to be used as a reference for their position. This thesis proposes some new routing protocols based on the angles (directions) of the adjacent mobile nodes and also the node density. In choosing the next node in forming a route, the neighbour node with the closest heading angle to that of the node of interest is selected, so the connection between the source and the destination consists of a series of nodes that are moving in approximately the same direction. The rationale behind this concept is to maintain the connection between the nodes as long as possible. This is in contrast to the well known hop count method, which does not consider the connection lifetime. We propose three enhancements and modifications of the Ad-hoc on demand distance vector (AODV) protocol that can find a suitable path between source and destination using combinations and prioritization of angle direction and hop count. Firstly, we consider that if there are multiple routing paths available, the path with the minimum hop count is selected and when the hop counts are the same the path with the best angle direction is selected. Secondly, if multiple routing paths are available the paths with the best angle direction are chosen but if the angles are the same (fall within the same specified segment), the path with minimum hop count is chosen. Thirdly, if there is more than one path available, we calculate the average of all the heading angles in every path and find the best one (lowest average) from the source to the destination. In MANETs, flooding is a popular message broadcasting technique so we also propose a new scheme for MANETS where the value of the rebroadcast packets for every host node is dynamically adjusted according to the number of its neighbouring nodes. A fixed probabilistic scheme algorithm that can dynamically adjust the rebroadcasting probability at a given node according to its ID is also proposed; Fixed probabilistic schemes are one of the solutions to reduce rebroadcasts and so alleviate the broadcast storm problem. Performance evaluation of the proposed schemes is conducted using the Global Mobile Information System (GloMoSim) network simulator and varying a number of important MANET parameters, including node speed, node density, number of nodes and number of packets, all using a Random Waypoint (RWP) mobility model. Finally, we measure and compare the performance of all the proposed approaches by evaluating them against the standard AODV routing protocol. The simulation results reveal that the proposed approaches give relatively comparable overall performance but which is better than AODV for almost all performance measures and scenarios examined.
15

A Middleware for Targeted Marketing in Spontaneous Social Communities

Tian, Zhao 27 September 2012 (has links)
With the proliferation of mobile devices and wireless connectivity technologies, mobile social communities offer novel opportunities for targeted marketing by service or product providers. Unfortunately, marketers are still unable to realize the full potential of these markets due to their inability to effectively target right audiences. This thesis presents a novel middleware for identifying spontaneous social communities (SSCs) of mobile users in ad hoc networks in order to facilitate marketers' advertisements. The contributions of the presented work are two fold; the first is a novel model for SSCs that captures their unique dynamic nature, in terms of community structure and interest in different \textit{hot-topics} over time. These time-varying interests are represented through an inferred \textit{community profile prototype} that reflects dominant characteristics of community members. This prototype is then employed to facilitate the identification of new potential members. The selected community prototypes are also used by marketers to identify the right communities for their services or products promotions. The second contribution of this paper is novel distributed techniques for efficient calculation of the community prototypes and identification of potential community links. In contrast to traditional models of detecting fixed and mobile social networks that rely on pre-existing friendships among its members to predict new ones, the proposed model focuses on measuring the degree of similarity between the new user's profile and the profiles of members of each community in order to predict new users' relationships in the community. The adopted model of SSCs can foster many existing and new socially-aware applications such as recommender systems for social events and tools for collaborative work. It is also an ideal target for business-oriented applications such as short-message-service (SMS) advertisement messages, podcasting news feeds in addition to location/context-aware services. The performance of the proposed work was evaluated using the NetLogo platform where obtained experimental results demonstrate the achieved high degree of stability in the resulting communities in addition to the effectiveness of the proposed middleware in terms of the reduction in the number of routing messages required for advertisements.
16

JTP, an energy-aware transport protocol for mobile ad hoc networks

Riga, Niky 22 March 2016 (has links)
Wireless ad-hoc networks are based on a cooperative communication model, where all nodes not only generate traffic but also help to route traffic from other nodes to its final destination. In such an environment where there is no infrastructure support the lifetime of the network is tightly coupled with the lifetime of individual nodes. Most of the devices that form such networks are battery-operated, and thus it becomes important to conserve energy so as to maximize the lifetime of a node. In this thesis, we present JTP, a new energy-aware transport protocol, whose goal is to reduce power consumption without compromising delivery requirements of applications. JTP has been implemented within the JAVeLEN system. JAVeLEN~\cite{javelen08redi}, is a new system architecture for ad hoc networks that has been developed to elevate energy efficiency as a first-class optimization metric at all protocol layers, from physical to transport. Thus, energy gains obtained in one layer would not be offset by incompatibilities and/or inefficiencies in other layers. To meet its goal of energy efficiency, JTP (1) contains mechanisms to balance end-to-end vs. local retransmissions; (2) minimizes acknowledgment traffic using receiver regulated rate-based flow control combined with selected acknowledgments and in-network caching of packets; and (3) aggressively seeks to avoid any congestion-based packet loss. Within this ultra low-power multi-hop wireless network system, simulations and experimental results demonstrate that our transport protocol meets its goal of preserving the energy efficiency of the underlying network. JTP has been implemented on the actual JAVeLEN nodes and its benefits have been demoed on a real system.
17

Mobile P2Ping: A Super-Peer based Structured P2P System Using a Fleet of City Buses

Seet, Boon-Chong 01 1900 (has links)
Recently, researchers have introduced the notion of super-peers to improve signaling efficiency as well as lookup performance of peer-to-peer (P2P) systems. In a separate development, recent works on applications of mobile ad hoc networks (MANET) have seen several proposals on utilizing mobile fleets such as city buses to deploy a mobile backbone infrastructure for communication and Internet access in a metropolitan environment. This paper further explores the possibility of deploying P2P applications such as content sharing and distributed computing, over this mobile backbone infrastructure. Specifically, we study how city buses may be deployed as a mobile system of super-peers. We discuss the main motivations behind our proposal, and outline in detail the design of a super-peer based structured P2P system using a fleet of city buses. / Singapore-MIT Alliance (SMA)
18

A Middleware for Targeted Marketing in Spontaneous Social Communities

Tian, Zhao 27 September 2012 (has links)
With the proliferation of mobile devices and wireless connectivity technologies, mobile social communities offer novel opportunities for targeted marketing by service or product providers. Unfortunately, marketers are still unable to realize the full potential of these markets due to their inability to effectively target right audiences. This thesis presents a novel middleware for identifying spontaneous social communities (SSCs) of mobile users in ad hoc networks in order to facilitate marketers' advertisements. The contributions of the presented work are two fold; the first is a novel model for SSCs that captures their unique dynamic nature, in terms of community structure and interest in different \textit{hot-topics} over time. These time-varying interests are represented through an inferred \textit{community profile prototype} that reflects dominant characteristics of community members. This prototype is then employed to facilitate the identification of new potential members. The selected community prototypes are also used by marketers to identify the right communities for their services or products promotions. The second contribution of this paper is novel distributed techniques for efficient calculation of the community prototypes and identification of potential community links. In contrast to traditional models of detecting fixed and mobile social networks that rely on pre-existing friendships among its members to predict new ones, the proposed model focuses on measuring the degree of similarity between the new user's profile and the profiles of members of each community in order to predict new users' relationships in the community. The adopted model of SSCs can foster many existing and new socially-aware applications such as recommender systems for social events and tools for collaborative work. It is also an ideal target for business-oriented applications such as short-message-service (SMS) advertisement messages, podcasting news feeds in addition to location/context-aware services. The performance of the proposed work was evaluated using the NetLogo platform where obtained experimental results demonstrate the achieved high degree of stability in the resulting communities in addition to the effectiveness of the proposed middleware in terms of the reduction in the number of routing messages required for advertisements.
19

Design and Optimization of Wireless Networks for Large Populations

Silva Allende, Alonso Ariel 07 June 2010 (has links) (PDF)
The growing number of wireless devices and wireless systems present many challenges on the design and operation of these networks. We focus on massively dense ad hoc networks and cellular systems. We use the continuum modeling approach, useful for the initial phase of deployment and to analyze broad-scale regional studies of the network. We study the routing problem in massively dense ad hoc networks, and similar to the work of Nash, and Wardrop, we define two principles of network optimization: user- and system-optimization. We show that the optimality conditions of an appropriately constructed optimization problem coincides with the user-optimization principle. For different cost functions, we solve the routing problem for directional and omnidirectional antennas. We also find a characterization of the minimum cost paths by extensive use of Green's theorem in directional antennas. In many cases, the solution is characterized by a partial differential equation. We propose its numerical analysis by finite elements method which gives bounds in the variation of the solution with respect to the data. When we allow mobility of the origin and destination nodes, we find the optimal quantity of active relay nodes. In Network MIMO systems and MIMO broadcast channels, we show that, even when the channel offers an infinite number of degrees of freedom, the capacity is limited by the ratio between the size of the antenna array at the base station and the mobile terminals position and the wavelength of the signal. We also find the optimal mobile association for the user- and system-optimization problem under different policies and distributions of the users.
20

Intrusion Detection and Response Systems for Mobile Ad Hoc Networks

Huang, Yi-an 20 November 2006 (has links)
A mobile ad hoc network (MANET) consists of a group of autonomous mobile nodes with no infrastructure support. In this research, we develop a distributed intrusion detection and response system for MANET, and we believe it presents a second line of defense that cannot be replaced by prevention schemes. We based our detection framework on the study of attack taxonomy. We then propose a set of detection methods suitable of detecting different attack categories. Our approaches are based on protocol specification analysis with categorical and statistical measures. Node-based approaches may be too restrictive in scenarios where attack patterns cannot be observed by any isolated node. Therefore, we have developed cooperative detection approaches for a more effective detection model. One approach is to form IDS clusters by grouping nearby nodes, and information can be exchanged within clusters. The cluster-based scheme is more efficient in terms of power consumption and resource utilization, it is also proved resilient against common security compromises without changing the decentralized assumption. We further address two response techniques, traceback and filtering. Existing traceback systems are not suitable for MANET because they rely on incompatible assumptions such as trustworthy routers and static route topology. Our solution, instead, adapts to dynamic topology with no infrastructure requirement. Our solution is also resilient in the face of arbitrary number of collaborative adversaries. We also develop smart filtering schemes to maximize the dropping rate of attack packets while minimizing the dropping rate of normal packets with real-time guarantee. To validate our research, we present case study using both ns-2 simulation and MobiEmu emulation platform with three ad hoc routing protocols: AODV, DSR and OLSR. We implemented various representative attacks based on the attack taxonomy. Our experiments show very promising results using node-based and cluster-based approaches.

Page generated in 0.043 seconds