• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Diffusion And Reaction In Selected Uranium Alloy System

Huang, Ke 01 January 2012 (has links)
U-Mo metallic fuels with Al alloys as the matrix/cladding are being developed as low enriched uranium fuels under the Reduced Enrichment for Research and Test Reactor (RERTR) program. Significant interactions have been observed to occur between the U-Mo fuel and the Al alloy during fuel processing and irradiation. U-Zr metallic fuels with stainless steel claddings have been developed for the generation IV sodium fast reactor (SFR). The fuel cladding chemical interaction (FCCI) induced by the interdiffusion of components was also observed. These interactions induce deleterious effects on the fuel system, such as thinning of the cladding layer, formation of phases with undesirable properties, and thermal cracking due to thermal expansion mismatches and changes in molar volume. The interaction between the fuel and the cladding involves multi-component interdiffusion. To determine the ternary interdiffusion coefficients using a single diffusion couple, a new method based on regression via the matrix transformation approach is proposed in this study. This new method is clear in physical meaning and simple in mathematical calculation. The reliability and accuracy of this method have been evaluated through application to three case studies: a basic asymptotic concentration profile, a concentration profile with extrema and a smoothed concentration profile with noise. Generally, this new method works well in all three cases. In order to investigate the interdiffusion behavior in U-Mo alloys, U vs. Mo diffusion couples were assembled and annealed in the temperature range of 650 to 1000°C. The interdiffusion microstructures and concentration profiles were examined via scanning electron iv microscopy (SEM) and electron probe microanalysis (EPMA), respectively. Interdiffusion coefficients and activation energies were calculated as functions of temperature and Mo composition. The intrinsic diffusion coefficients of U and Mo at the marker composition were also determined. The activity of U and the thermodynamic factor of the U-Mo alloy have been calculated using the ideal solution, the regular solution, and the subregular solution models based on the molar excess Gibbs free energy of the U-Mo alloy. The calculated intrinsic diffusivities of U and Mo along with the thermodynamic factor of the U-Mo alloy were employed to estimate the atomic mobilities and the vacancy wind effects of U and Mo according to Manning’s description. To explore potential diffusion barrier materials for reducing the fuel cladding chemical interaction between the U-Mo fuel and the Al alloy matrix/cladding, the interdiffusion behavior between U-Mo alloys and Mo, Zr, Nb and Mg were systematically studied. U-10wt.%Mo vs. Mo, Zr and Nb diffusion couples were annealed in the temperature range from 600 to 1000°C. A diffusion couple between U-7wt.%Mo and Mg was annealed at 550°C for 96 hours. SEM and transmission electron microscopy (TEM) were applied to characterize the microstructure of the interdiffusion zone. X-ray energy dispersive spectroscopy (XEDS) and EPMA were utilized to examine the concentration redistribution and the phase constituents. For the U-Mo vs. Mo diffusion couples, the interdiffusion coefficients at high Mo concentrations ranging from 22 to 32 at.%Mo were determined for the first time. In the U-Mo vs. Zr diffusion couples, the Mo2Zr phase was found at the interface. The diffusion paths were estimated and investigated according to the Mo-U-Zr ternary phase diagram. Thermal cracks and pure U precipitates were found within the diffusion zone in the U-Mo vs. Nb system. The growth rate of the interdiffusion zone v was found to be lower by about 103 times for Zr, 105 times for Mo and 106 times for Nb compared to those observed in the U-10wt.%Mo vs. Al or Al-Si systems. For the diffusion couple of U-Mo vs. Mg, the U-Mo was bonded very well to the Mg and there was negligible diffusion observed even after 96 hours annealing at 550°C. For a more fundamental understanding of the complex diffusion behavior between U-Zr fuels and their stainless steel claddings, U vs. Fe, Fe-15wt.%Cr and Fe-15wt.%Cr-15wt.%Ni diffusion couples were examined to investigate the interdiffusion behaviors between U and Fe and the effects of the alloying elements Cr and Ni. The diffusion couples were annealed in the temperature range from 580 to 700°C for various times. Two intermetallic phases, U6Fe and UFe2, developed in all of the diffusion couples with the U6Fe layer growing faster than the UFe2 layer. For the diffusion couples of U vs. Fe, extrinsic growth constants, intrinsic growth constants, integrated interdiffusion coefficients and activation energies in each phase were calculated. The results suggest that U6Fe impeded the growth of UFe2, and the boundary condition change caused by the allotropic transformation of U played a role in the growth of the U6Fe and UFe2 layers. The reasons why U6Fe grew much faster than UFe2 are also discussed. The additions of Cr and Ni into Fe affected the growth rates of U6Fe and UFe2. The solubility of Cr and Ni in U6Fe and UFe2 were determined, and it was found that Cr diffused into U more slowly than Fe or Ni.
2

Différents problèmes théoriques et appliqués de transport dissipatif en milieux poreux / Different theoretical and applied problems of dissipative transport in porous media

Mizyakin, Yuri 22 September 2010 (has links)
La thèse concerne trois problématiques indépendantes : le transport dissipatif dans des milieux hétérogènes; échange de masse entre un réservoir de gaz et aquifère ; ségrégation compositionnelle. Le point commun entre les problèmes traités sont les processus irréversibles de redistribution de la composition chimique. Le premier chapitre est consacré à la déduction, en accord avec les principes de la thermodynamique, d’un modèle généralisé de transport simultané de matière et de chaleur. Le chapitre 2 est consacré à l’étude de diffusion multi-compositionnelle dans un milieu hétérogène. Cette étude vise une application aux phénomènes de transport dans les réservoirs des hydrocarbures qui, d’une part, sont le siège de divers des processus de transport (plusieurs composants + chaleur) en interaction (processus croisés au sens d’Onsager) et, d’autre part, sont anisotropes pour les processus de transport étudiés. Le chapitre 3 est consacré à l’étude du processus de balayage d’un réservoir par une nappe aquifère. Le chapitre 4 est consacré au développement d’un code « éléments finis » conçu pour résoudre le même problème que dans le chapitre 3, mais dans une approche moins idéalisée. Le chapitre 5 est consacré à l’étude de la convection forcée dans un réservoir avec des champs de gravité et de température non colinéaires. Cette convection est une des composantes du processus de séparation thermo-gravitationnelle des espèces chimiques qui peut avoir lieu dans les réservoirs souterrains / The thesis concerns three independent subject areas: the dissipative transport in heterogeneous geological media; a transport problem in an underground gas reservoir; compositional segregation in reservoirs. The common point of all examined problems is the irreversible redistribution of chemical composition of a fluid in the reservoirs. The first chapter is devoted to development of a microscopic model of simultaneous mass and heat transfer in agreement with thermodynamic principles. The second chapter is dedicated to study of multi-component diffusion in a heterogeneous medium. This study aims an application to transport phenomena in hydrocarbon reservoirs characterized firstly by diversity of transported substances (several components + heat) and their interaction (in Onsager’s meaning) and secondly by anisotropy of medium where they take place. The third chapter is dedicated to analytical study of underground gas storage sweeping due to gas dissolution in aquifer. In the fourth chapter the same problem (gas sweeping) was studied numerically in a less idealized approach using finite element method. The fifth chapter is dedicated to study of forced convection taking place in the reservoirs where the temperature gradient and gravity force are not collinear. This convection represents an element of the thermo-gravitational component segregation employed in industry (thermo-gravitational columns) and can take place in underground reservoirs
3

[en] IMPACT OF MOLECULAR DIFFUSION MODELS IN THE PREDICTION OF WAX DEPOSITION / [pt] IMPACTO DE MODELOS DE DIFUSÃO MOLECULAR NA PREVISÃO DE DEPOSIÇÃO DE PARAFINA

PAULO GUSTAVO CANDIDO DE OLIVEIRA 21 November 2022 (has links)
[pt] O petróleo é constituído por uma cadeia de hidrocarbonetos, os quais se precipitam na forma de partículas sólidas de parafina, quando a sua temperatura cai abaixo de um patamar conhecido como TIAC (Temperatura Inicial de Aparecimento de Cristais). Essas partículas podem se depositar nas paredes internas dos dutos obstruindo o escoamento, podendo gerar prejuízos da ordem de milhões de dólares. Por esse motivo, a habilidade de previsão e controle da deposição de parafina em eventos futuros é de fundamental importância tanto para projetistas como operadores de tubulações. Visando lidar com esse problema, grande esforço vem sendo feito pela comunidade científica com o intuito de aperfeiçoar as metodologias para previsão do depósito de parafina. Frequentemente, a modelagem da difusão das espécies é realizada utilizando a Lei de Fick, válida para misturas binárias, apesar dos hidrocarbonetos presentes no petróleo formarem uma mistura multicomponente. O presente trabalho propõe avaliar o fluxo difusivo de massa das espécies utilizando o modelo Stefan-Maxwell, compatível com sistemas multicomponentes. Para determinar a evolução axial e temporal da espessura do depósito de parafina, o escoamento foi modelado como uma mistura líquido/sólido e equações de conservação de energia, massa, quantidade de movimento linear e continuidade das espécies são resolvidas, acopladas com o modelo termodinâmico de múltiplas soluções sólidas, para determinação da precipitação da parafina. As equações de conservação foram resolvidas utilizando o software de código livre OpenFOAM (marca registrada). Uma comparação das previsões obtidas com a modelagem de Fick e de Stefan-Maxwell com dados experimentais, mostrou que no início do processo de deposição, o impacto do modelo difusivo é desprezível. Porém, observou-se que a medida que o tempo passa, o modelo de Stefan Maxwell prevê um maior incremento da concentração das espécies mais pesadas no interior do depósito de parafina quando comparado com a previsão da modelagem de Fick. / [en] Petroleum is formed by a chain of hydrocarbons, which precipitates in the form of solid particles of paraffin, when its temperature drops below a threshold known as Wax Appearance Temperature (WAT). These particles can be deposited on the inner walls of the pipelines, obstructing the flow, which can generate losses in the order of several millions of dollars. For this reason, the ability to predict and control wax deposition in future events is of fundamental importance for both designers and operators of pipelines. In an attempt to deal with this problem, a great effort has been made by the scientific community aiming to improve wax deposition prediction methodologies. Often, the modeling of species diffusion is performed using Fick s law, valid for binary mixtures, although the hydrocarbons present in the oil form a multicomponent solution. The present work proposes to evaluate the species mass diffusive flux employing the Stefan-Maxwell model, compatible with multicomponent systems. To determine the axial and temporal evolution of the wax deposition thickness, the flow was modelled as a liquid/solid mixture and the conservation equations of energy, mass, linear momentum and species continuity were solved coupled with the thermodynamic model of multiple solid solutions, to determine the paraffin precipitation. The conservation equations were solved using the open-source software OpenFOAM (trademark). A comparison of the predictions obtained with the Fick and Stefan-Maxwell models with experimental data showed that at the beginning of the deposition process, the impact of diffusive model is negligible. However, it was observed that as time passes, the Stefan-Maxwell model predicts a greater increase in the concentration of heaviest species inside the wax deposit when compared to the prediction of Fick s law

Page generated in 0.0297 seconds