Spelling suggestions: "subject:"[een] MULTIVARIATE GARCH MODELS"" "subject:"[enn] MULTIVARIATE GARCH MODELS""
1 |
An empirical study in risk management: estimation of Value at Risk with GARCH family modelsNyssanov, Askar January 2013 (has links)
In this paper the performance of classical approaches and GARCH family models are evaluated and compared in estimation one-step-ahead VaR. The classical VaR methodology includes historical simulation (HS), RiskMetrics, and unconditional approaches. The classical VaR methods, the four univariate and two multivariate GARCH models with the Student’s t and the normal error distributions have been applied to 5 stock indices and 4 portfolios to determine the best VaR method. We used four evaluation tests to assess the quality of VaR forecasts: - Violation ratio - Kupiec’s test - Christoffersen’s test - Joint test The results point out that GARCH-based models produce far more accurate forecasts for both individual and portfolio VaR. RiskMetrics gives reliable VaR predictions but it is still substantially inferior to GARCH models. The choice of an optimal GARCH model depends on the individual asset, and the best model can be different based on different empirical data.
|
2 |
[en] DISTRIBUTIONS OF RETURNS, VOLATILITIES AND CORRELATIONS IN THE BRAZILIAN STOCK MARKET / [pt] DISTRIBUIÇÕES DE RETORNOS, VOLATILIDADES E CORRELAÇÕES NO MERCADO ACIONÁRIO BRASILEIROMARCO AURELIO SIMAO FREIRE 24 February 2005 (has links)
[pt] A hipótese de normalidade é comumente utilizada na área de
análise de risco para descrever as distribuições dos
retornos padronizados pelas volatilidades. No entanto,
utilizando cinco dos ativos mais líquidos na Bovespa, este
trabalho mostra que tal hipótese não é compatível com
medidas de volatilidades estimadas pela metodologia EWMA ou
modelos GARCH. Em contraposição, ao extrair a informação
contida em cotações intradiárias, a metodologia de
volatilidade realizada origina retornos padronizados
normais, potencializando ganhos no cálculo de medidas de
Valor em Risco. Além disso, são caracterizadas as
distribuições de volatilidades e correlações de ativos
brasileiros e, em especial, mostra-se que as distribuições
das volatilidades são aproximadamente lognormais, enquanto
as distribuições das correlações são aproximadamente
normais. A análise é feita tanto de um ponto de vista
univariado quanto multivariado e fornece subsídio para a
melhor modelagem de variâncias e correlações em um contexto
de grande dimensionalidade. / [en] The normality assumption is commonly used in the risk
management area to describe the distributions of returns
standardized by volatilities. However, using five of the
most actively traded stocks in Bovespa, this paper shows
that this assumption is not compatible with volatilities
estimated by EWMA or GARCH models. In sharp contrast, when
we use the information contained in high frequency data to
construct the realized volatilies measures, we attain the
normality of the standardized returns, giving promise of
improvements in Value at Risk statistics. We also describe
the distributions of volatilities and correlations of the
brazilian stocks, showing that the distributions of
volatilities are nearly lognormal and the distribuitions of
correlations are nearly Gaussian. All analysis is traced
both in a univariate and a multivariate framework and
provides background for improved high-dimensional
volatility and correlation modelling in the brazilian stock
market.
|
3 |
Un modello VAR-GARCH multivariato per il mercato elettrico italiano. / A VAR-MGARCH MODEL FOR THE DEREGULATED ITALIAN ELECTRICITY MARKETDELLA NOCE, MATTEO 13 July 2011 (has links)
E’ stato estesamente appurato che i mercati dell'elettricità mostrano mean-reversion e elevata volatilità dei prezzi. Questo lavoro utilizza un modello VAR-MGARCH al fine di cogliere queste caratteristiche presenti sul mercato dell'energia elettrica italiana (IPEX) e analizzare le interrelazioni esistenti tra le diverse regioni in cui il mercato è suddiviso. L’analisi è condotta sui prezzi giornalieri dal 1 ° gennaio 2006 al 31 dicembre 2008.
I coefficienti stimati dalle equazioni condizionali indicano che i mercati regionali sono abbastanza integrati e i prezzi regionali dell'energia elettrica possono essere adeguatamente previsti impiegando i prezzi passati di ciascun mercato zonale.
La volatilità e la cross-volatility sono significative per tutti i mercati, indicando la presenza di forti componenti ARCH e GARCH e la sostanziale inefficienza dei mercati. E’ inoltre evidente un’elevata persistenza della volatilità e della cross-volatility in tutti i mercati.
I risultati indicano inoltre che gli shock rilevati, sia nella volatilità, sia nei vari mercati, persistono nel tempo e che in ogni mercato la persistenza è più marcata quando è causata da innovazioni stimate sulle stesso mercato rispetto a shock stimati su altre aree. Questa persistenza descrive la tendenza delle variazioni dei prezzi a raggrupparsi nel tempo. / It is commonly known that spot electricity markets show mean-reversion and high price volatility. This work employs a VAR-MGARCH model to capture these features in the Italian electricity market (IPEX) and analyze the interrelation existing among the different regions in which the market is divided. Daily spot prices from 1 January 2006 to 31 December 2008 are employed.
The estimated coefficients from the conditional mean equations indicate that the regional markets are quite integrated and regional electricity prices could be usefully forecasted using lagged prices from either the same market or from the other areal markets.
Volatility and cross-volatility spill-overs are significant for all markets, indicating the presence of strong ARCH and GARCH effects and market inefficiency. Strong persistence of volatility and cross-volatility are also evident in all local markets.
The results also indicate that volatility innovations or shocks in all markets persist over time and that in every market this persistence is more marked for own-innovations or shocks than cross-innovations or shocks. This persistence captures the propensity of price changes of similar magnitude to cluster in time.
|
Page generated in 0.0471 seconds