1 |
[en] HPA MODEL FOR MODELING HIGH FREQUENCY DATA: APPLICATION TO FORECAST HOURLY ELECTRIC LOAD / [pt] MODELO HPA PARA A MODELAGEM DE DADOS DE ALTA FREQUÊNCIA: APLICAÇÃO À PREVISÃO HORÁRIA DE CARGA ELÉTRICASCHAIANE NOGUEIRA OUVERNEY BARROSO 28 December 2010 (has links)
[pt] A previsão de curto prazo, que envolve dados de alta frequência, é essencial para a confiabilidade e eficiência da operação do setor elétrico, fazendo com que a alocação da carga seja feita de forma eficiente, além de indicar possíveis distorções nos próximos períodos (dias, horas, ou frações de hora). A fim de garantir a operação energética, diversas abordagens têm sido empregadas com vistas à previsão de carga de energia a curto prazo. Dentre elas, pode-se citar os modelos híbridos de Séries Temporais, Lógica Fuzzy e Redes Neurais e o Método Holt-Winters com múltiplos ciclos que é a principal ferramenta utilizada atualmente. O HPA (Hierarchical Profiling Approach) é um modelo que decompõe a variabilidade dos dados de séries temporais em três componentes: determinística, estocástica e ruído. A metodologia é capaz de tratar observações únicas, periódicas e aperiódicas, e ao mesmo tempo, serve como uma técnica de pré-branqueamento. Este trabalho tem por objetivo implementar o HPA e aplicá-lo a dados de carga de energia elétrica de 15 em 15 minutos pra um estado da região Sudeste do Brasil. Também serão analisadas as previsões de curto prazo geradas pelo modelo para a série considerada, visto que a habilidade preditiva do HPA ainda é desconhecida para séries brasileiras. As previsões forneceram Coeficiente U de Theil igual a 0,36 e um Erro Percentual Absoluto Médio (MAPE, Mean Absolute Percentage Error) de 5,46%, o qual é bem inferior ao valor fornecido pelo Modelo Ingênuo usado para comparação (15,08%). / [en] Short-term forecast, which involves high frequency data, is essential for a reliable and efficient electricity sector operation, enabling an efficient power load allocation and indicating possible distortions in the coming periods (days, hours, or hour fractions). To ensure the operation efficiency, several approaches have been employed in order to forecast the short-term load. Among them, one can mention the hybrid models of Time Series, Fuzzy Logic and Neural Networks and Holt-Winters Method with multiple cycles, which is the main tool used today. The HPA (Hierarchical Profiling Approach) model decomposes the variability of time series data into three components: deterministic, stochastic and noise. The model is capable of modeling single, periodic and aperiodic observations, and at the same time function as a pre-whitening technique. This work aims to implement the HPA and to apply it in 15 in 15 minutes load data of a Brazil’s southeastern state, since the predictive ability of the HPA is still not known for the Brazilian series. The short-term forecasts estimated for the series considered are analyzed and provided a Theil-U Coefficient equal to 0.36 and a Mean Absolute Percentage Error (MAPE) of 5.46%, which is smaller than the value given by the Naive Model (15.08%).
|
2 |
[en] DISTRIBUTIONS OF RETURNS, VOLATILITIES AND CORRELATIONS IN THE BRAZILIAN STOCK MARKET / [pt] DISTRIBUIÇÕES DE RETORNOS, VOLATILIDADES E CORRELAÇÕES NO MERCADO ACIONÁRIO BRASILEIROMARCO AURELIO SIMAO FREIRE 24 February 2005 (has links)
[pt] A hipótese de normalidade é comumente utilizada na área de
análise de risco para descrever as distribuições dos
retornos padronizados pelas volatilidades. No entanto,
utilizando cinco dos ativos mais líquidos na Bovespa, este
trabalho mostra que tal hipótese não é compatível com
medidas de volatilidades estimadas pela metodologia EWMA ou
modelos GARCH. Em contraposição, ao extrair a informação
contida em cotações intradiárias, a metodologia de
volatilidade realizada origina retornos padronizados
normais, potencializando ganhos no cálculo de medidas de
Valor em Risco. Além disso, são caracterizadas as
distribuições de volatilidades e correlações de ativos
brasileiros e, em especial, mostra-se que as distribuições
das volatilidades são aproximadamente lognormais, enquanto
as distribuições das correlações são aproximadamente
normais. A análise é feita tanto de um ponto de vista
univariado quanto multivariado e fornece subsídio para a
melhor modelagem de variâncias e correlações em um contexto
de grande dimensionalidade. / [en] The normality assumption is commonly used in the risk
management area to describe the distributions of returns
standardized by volatilities. However, using five of the
most actively traded stocks in Bovespa, this paper shows
that this assumption is not compatible with volatilities
estimated by EWMA or GARCH models. In sharp contrast, when
we use the information contained in high frequency data to
construct the realized volatilies measures, we attain the
normality of the standardized returns, giving promise of
improvements in Value at Risk statistics. We also describe
the distributions of volatilities and correlations of the
brazilian stocks, showing that the distributions of
volatilities are nearly lognormal and the distribuitions of
correlations are nearly Gaussian. All analysis is traced
both in a univariate and a multivariate framework and
provides background for improved high-dimensional
volatility and correlation modelling in the brazilian stock
market.
|
Page generated in 0.0337 seconds