• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 399
  • 259
  • 141
  • 73
  • 16
  • 10
  • 9
  • 7
  • 5
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 1098
  • 310
  • 235
  • 190
  • 140
  • 134
  • 122
  • 122
  • 120
  • 108
  • 105
  • 99
  • 99
  • 83
  • 70
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Nanocomposite Electrodes For Electrochemical Supercapacitors

Rorabeck, Kaelan January 2021 (has links)
Supercapacitor electrodes were fabricated at a high active mass loading and exhibited enhanced electrochemical capacitance. A conceptually new salting-out extraction processing technique for the synthesis of dispersed Mn3O4-carbon nanotube (CNT) nanocomposites was developed, alleviating the need for hydrophobic solvents. The choice of isopropyl alcohol and NaCl for the extraction process offer advantages of an easy upscaling of this process. The salting out technique was shown to work with Octanohydroxyamic acid (OHA) and Lauryl Gallate (LG) as extractors and dispersants, critical to the success of the extraction. Mechanisms for surface adsorption on Mn3O4 and CNT for both OHA and LG are discussed. A secondary project was also undertaken, to investigate the use of chlorogenic acid and 3,4,5 – trihydroxybenzamide, as co-dispersing agents for MnO2 and CNTs. These molecules are used due to their unique structural properties, which are discussed. The electrodes fabricated using these co-dispersants showed significant increases in their specific capacitances and SEM imaging indicated improved mixing, compared to samples prepared without dispersants. A specific capacitance of 6.5 F g-1 was achieve at low electrical resistance, attributed to the microstructure of electrodes prepared with the co-dispersant molecules. / Thesis / Master of Applied Science (MASc) / The ever-growing realization that our energy consumption as a civilization is not sustainable, has fueled people around the globe to imagine and design new methods of energy storage, in attempts to mitigate this issue. From the foundational works of scientists, it has become clear to see that there is not “one right answer”. Instead, the unique benefits and drawbacks of energy storage technologies should be balanced and applied in situations where their properties permit a high efficacy. The intention of this work is to assist in the development of new materials to be used for energy storage devices called electrochemical supercapacitors. Novel colloidal processing techniques were developed, leading to the fabrication of high-performance electrodes, and providing further insight to the structure-properties relationship of organic extractors and co-dispersing agents for the design of nanocomposites.
322

A route to enhanced intercalation in rubber silicate nanocomposites

Al-Yamani, Faisal M. 23 September 2005 (has links)
No description available.
323

A NOVEL APPROACH TO OBTAIN HIGH PERFORMANCE LAYERED SILICATE THERMOSET POLYIMIDE MATRIX NANOCOMPOSITES

Gintert, Michael Jason 02 October 2007 (has links)
No description available.
324

Nucleating Agent-Assisted Preparation of Polypropylene (PP)/Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposites and Their Characterization

Lee, Byoung-Jo 01 September 2009 (has links)
No description available.
325

Dispersion Characteristics of Nanocomposites Based on Functionalized Block Copolymers

Ke, Linping 28 July 2010 (has links)
No description available.
326

Manufacturing of High Performance Polymer Nanocomposites Containing Carbon Nanotubes And Carbon Nanofibers Using Ultrasound Assisted Extrusion Process

Kumar, Rishi 07 December 2010 (has links)
No description available.
327

Synthesis of Polymer Nanocomposites via Electrohydrodynamic (EHD)-mediated Mixing and Emulsification

Lee, Kil Ho January 2019 (has links)
No description available.
328

Processing, Microstructural And Mechanical Characterization Of Mechanically Alloyed Al-al2o3 Nanocomposites

Katiyar, Pushkar 01 January 2004 (has links)
Aluminum-alumina nanocomposites were synthesized using mechanical alloying of blended component powders of pure constituents. This study was performed on various powder mixtures with aluminum as the matrix and alumina as the reinforcement with volume fractions of 20, 30, and 50 % and Al2O3 particle sizes of 50 nm, 150 nm, and 5 µm. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were used for the crystal structure and microstructural characterization of the powders at different stages of milling. Al2O3 powders with 50 nm and 150 nm particle size were predominantly of γ-type, while Al2O3 of 5 µm size was of α-type. The main goal was to achieve uniform distribution of the Al2O3 ceramic particles in the Al matrix, which was achieved on milling for 24 h in a SPEX mill or 100 h in a Fritsch Pulverisette planetary ball mill. The powders were consolidated in two stages: pre-compaction at room temperature followed by vacuum hot pressing (VHP) or hot isostatic pressing (HIP) techniques to a fully dense condition. The effect of reinforcement particle size and volume fraction on the stress-strain response, elastic modulus and yield strength of the composites was investigated. Nanoindentation and compression tests were performed to characterize the composite material. Yield strength of 515 MPa, compressive strength of 685 MPa and elastic modulus of 36 GPa were obtained from compression tests. Nanoindentation results gave the yield strength of 336 MPa, maximum shear stress of 194 MPa and an elastic modulus of 42 GPa. The low elastic modulus values obtained from the above tests might be because of localized yielding possibly due to residual stresses.
329

Microstructural And Mechanical Characterization Of Al-al2o3 Nanocomposites Synthesized By High-energy Milling

Prabhu, Balaji 01 January 2005 (has links)
The twin objectives of the investigation were (i) to synthesize Al/Al2O3 metal matrix composites (MMCs) with uniform distribution of the Al2O3 reinforcement in the Al matrix and (ii) to evaluate the effect of volume fraction and size of the reinforcement on the mechanical behavior of MMCs. This was achieved by successful synthesis of Al-Al2O3 MMCs with volume fractions of 5, 10, 20, 30, and 50%, and particle sizes of 50 nm, 150 nm, and 5 µm of Al2O3 synthesized from blended component powders by a high-energy milling technique. A uniform distribution of the Al2O3 reinforcement in the Al matrix was successfully obtained after milling the powders for a period of 20 h with a ball-to-powder weight ratio of 10:1 in a SPEX mill. The uniform distribution of Al2O3 in the Al matrix was confirmed by characterizing these nanocomposite powders by scanning electron microscopy and X-ray mapping. The energy dispersive spectroscopy and X-ray diffraction techniques were employed to determine the composition and phase analysis, respectively. The milled powders were then consolidated for subsequent mechanical characterization by (i) magnetic pulse compaction (MPC) (ii) hot-isostatic pressing (HIP), (iii) vaccum hot pressing (VHP), and (iv) a combination of vaccum hot pressing and hot-isostatic pressing (VHP+HIP). However, successful consolidation of the powders to near-full density was achieved only through VHP+HIP for the 5 and 10 vol. % Al2O3 samples with 50 nm and 150 nm particle sizes. The fully dense samples were then subjected to mechanical characterization by compression testing and nanoindentation techniques. The strength and elastic modulus values obtained from compression testing showed an increase with increasing volume fraction and decreasing particle size of the reinforcement. The nanoindentation results were, however, contradictory, and the presence of residual stresses in the samples was attributed as the cause for the deviation in values.
330

High Volume Fraction Mg-based Nanocomposites: Processing, Microstructure And Mechanical Behavior

Liu, Jinling 01 January 2013 (has links)
Mg-based metal matrix nanocomposites (MMNCs) with mechanical properties, superior to those of coarse-grained composites, are promising structural materials for applications in the automotive and aerospace industries. The research in this area was primarily focused earlier on either micro-scaled reinforcements or nano-scaled reinforcements with very low volume fractions. MMNCs with high volume fractions have not been explored yet. In this research, we study the processing, microstructures and properties of MMNCs containing ceramic nanoparticles up to 30 vol.%. We first investigated the mechanical alloying of Al2O3 nanoparticles and pure Mg under high-energy ball milling conditions. The phase evolution and their distribution were evaluated as a function of milling time. Then, the thermal stability of the formed nanocomposites was investigated by annealing it at high temperatures. It indicated that an exchange reaction had occurred to a large extent between Mg and Al2O3 resulting in the formation of Al and MgO phases. Additionally, the reaction between Al and unreacted Mg led to the formation of Mg-Al intermetallics. Due to the reaction between Mg and Al2O3 during the milling and annealing process, we attempted to synthesize Mg/SiC nanocomposites. The mixed powders containing 0, 5, 10 and 15 vol.% SiC were produced by high energy ball milling and then the powders were consolidated via spark plasma sintering. The phase constitutions and microstructures of the Mg/SiC nanocomposites were characterized. SiC nanoparticles (average particle size ~14 nm) appear to be homogeneously dispersed within the matrix, iv and the average inter-particle spacings of all the Mg/SiC nanocomposites were smaller than 50 nm. Microscopic methods, even at high magnifications did not reveal any significant porosity in the as-processed MMNCs. Mechanical characterization of the Mg/SiC nanocomposites was conducted using the microindentation test. Besides the microhardness test, different intermediate pause times and loading rates were used to evaluate the stiffness and loading rate sensitivity of our samples. The abnormal microhardness and loading rate sensitivity were showed for the Mg-15 vol.% SiC samples. At the same time, the monotonic increase of stiffness with volume fraction was exhibited in the Mg/SiC nanocomposites. Finally, we investigated the quasi-static and dynamic response of Mg/SiC nanocomposites and microcomposites, and discussed the underlying mechanisms. Strain softening was noticed in the milled Mg sample under quasi-static compression. Similarly, the strengthening effect leveling off was also observed in the Mg-15 vol.% SiC samples under either quasi-static or high-strain rate uniaxial compression conditions. No significant plastic deformation was observed in the Mg/SiC nanocomposites. The estimated strain rate sensitivity of all the Mg/SiC nanocomposites in this work was around 0.03, which is much smaller than 0.3 and 0.6, observed for 100 nm and 45 nm grain size pure Mg individually. In particular, the existing models fail in predicting the inverse volume fraction effect, and other mechanisms are yet to be explored. The presence of SiC nanoparticles may play an important role that leads to this difference

Page generated in 0.0488 seconds