• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 934
  • 349
  • 282
  • 122
  • 30
  • 23
  • 22
  • 17
  • 15
  • 13
  • 9
  • 8
  • 7
  • 6
  • 5
  • Tagged with
  • 2211
  • 1575
  • 347
  • 290
  • 284
  • 264
  • 207
  • 181
  • 173
  • 173
  • 154
  • 153
  • 149
  • 135
  • 132
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Scanning tunneling microscopy in La₂₋₂xSr₁₊₂xMn₂O₇ and honeycomb lattice in HOPG with a CNT-STM tip

Kim, Jeehoon, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
232

Interaction of intense laser fields with carbon nanotubes

Hsu, Han, January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2006. / Vita. Includes bibliographical references.
233

Template Synthesis of Tubular Sn-Based Nanostructures for Lithium Ion Storage

Wang, Yong, Zeng, Hua Chun, Lee, Jim Yang 01 1900 (has links)
We report herewith the preparation of SnO₂ nanotubes with very good shape and size control, and with and without a carbon nanotube overlayer, The SnO₂-core/carbon-shell nanotubes are excellent reversible Li ion storage compounds combining the best features of carbon (cyclability) and SnO₂ (capacity) to deliver a high specific capacity (~540-600 mAh/g) simultaneous with good cyclability (0.0375% capacity loss per cycle). / Singapore-MIT Alliance (SMA)
234

Cysteine-based reversible cyclic peptides for carbon nanotube functionalization /

Becraft, Eric Joseph, January 2008 (has links)
Thesis (M.S.)--University of Texas at Dallas, 2008. / Includes vita. Includes bibliographical references (leaves 113-118)
235

Adhesion and deformation during thermocompression bonding of vertically aligned carbon nanotube turfs to metallized substrates

Johnson, Ryan David, January 2008 (has links) (PDF)
Thesis (M.S. in materials science and engineering)--Washington State University, December 2008. / Title from PDF title page (viewed on Mar. 3, 2009). "Department of Mechanical and Materials Engineering." Includes bibliographical references.
236

Chiral and racemic calix[6]arenes and their self-assembly /

Hayes, Monty, January 2008 (has links)
Thesis (M.S.)--Texas State University--San Marcos, 2008. / Vita. Supplemental material: leaves 72-121. Includes bibliographical references (leaves 122-125). Also available on microfilm.
237

Magnetic Characterization of Ferrocene Derived Carbon Nanotubes

Malone, Johnathan Scott 01 December 2014 (has links)
Carbon nanotubes (CNTs) functionalized/embedded with ferromagnetic particles have several important advantages as materials for magnetic applications. The presence of ferromagnetic particles in a carbon matrix can substantially change the magnetic properties of CNT-based composites. For example, iron filled CNTs have been used as probes in magnetic force microscopy (MFM), and have potential in magnetic data storage applications. In addition, encapsulation in nanotubes provides iron nanoparticles with resistance to oxidation and mechanical damage. Chemical vapor deposition (CVD) is one of the most common single-step processes for the fabrication of high quality carbon nanotubes containing varying amounts of embedded ferromagnetic particles. This process results in the effective magnetic functionalization of CNTs and opens the door to numerous new applications. However, in order to optimize these materials for any application, their properties need to be understood. This study explores the ferromagnetic properties of carbon nanotubes containing nano-scaled iron particles which were derived from thermal decomposition of ferrocene. Both room temperature as well as low-temperature magnetic measurements will be presented and the results analyzed in the light of available theory.
238

Carbon nanotubes as a material for functional inks

Graddage, Neil January 2012 (has links)
Carbon nanotubes (CNTs) have been proposed as a material for use in printed electronics for a number of years. The potential to exploit the unique electrical and mechanical properties of these structures on the macro-scale is appealing; however there are a number of hurdles to overcome. Printing allows the deposition of CNT networks, the properties of which are governed by the CNT type and network density. The formulation of a suitable ink and deposition of a film with specific properties is challenging, and the work described in this thesis is concentrated on two specific areas, CNT ink development and CNT based device production. The CNT ink was developed by identifying key ink and dried film parameters for characterisation and assessing the effect of several major variables, namely the resin material, resin concentration, processing temperature, CNT concentration, CNT functionality and processing energy. A suitable research ink was developed and optimised using N-methyl-2-pyrrolidone as the solvent and polyvinyl alcohol as the resin at a concentration ratio of 1:1 with the CNT content. The effects of CNT concentration, CNT functionality and processing energy are shown to be interdependent. This is among the first reported studies to investigate the dependence of these factors upon a CNT ink for roll-to-roll processing. This ink system was then used in the production of CNT based thin film transistor (TFT) devices using flexography. Initially the concept was proven using MWCNTs. The design was then refined and devices were produced using SWCNTs at varying network densities. It was seen that the printing of CNT based devices using flexography is feasible, though careful control of the CNT network density is required to achieve suitable device performance. This is the first reported production of TFTs using flexography, and the first reported use of flexograi)hy to deposit CNTs.
239

The use of ferrocene and camphor for the synthesis of carbon nanotubes using catalystic chemical vapor deposition

Parshotam, Heena 08 July 2008 (has links)
The discovery of carbon nanotubes (CNTs) has sparked great interest in the scientific world because of their remarkable electrical and physical properties. Only a thorough understanding of these properties, however, will allow CNTs to be commercially viable. Essentially, CNTs are graphite-like surfaces of sp2 hybridized carbon atoms in the form of tubes. CNTs could range from single-walled carbon nanotubes (SWNTs), consisting of one cylindrical graphite sheet to multi-walled nanotubes (MWNTs) that have concentric sheets. Nanotubes can be synthesized using a number of techniques such as electric arc–discharge, laser ablation and catalytic chemical vapor deposition (CCVD). In this project the CCVD technique was used for the synthesis of CNTs because of it simplicity and availability. The source of carbon was not the conventional hydrocarbon gas, but was camphor, a botanical hydrocarbon that is a solid at room–temperature. Ferrocene was the catalyst, not only because it has been used before in the synthesis of nanotubes, but it appears to be one of the best catalysts during the CCVD synthesis of nanotubes. The presence of nitrogen gas is known to assist in the synthesis of CNTs that have a bamboo–like structure; hence the effect of carrier gases such as nitrogen, argon/hydrogen and argon on the quality of nanotubes synthesized was investigated. Initially, the optimal experimental method for the synthesis of CNTs was determined by varying the reaction path length, temperature, mixing the catalyst and carbon source together or keeping them separate and varying the %m/m of the catalyst to carbon source. It was found that either an increase in the reaction temperature or an increased path length resulted in an increase in the mass of product obtained, whereas mixing the catalyst and carbon source together as opposed to them being separated only caused a slight variation in the mass of product synthesized. The mass of product synthesized also increased as the catalyst concentration increased. The remainder of the project was aimed at investigating the role of different gases: nitrogen, argon and hydrogen (in argon) in the CCVD synthesis of CNTs. The resulting materials were characterized using transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and laser Raman analysis. The results indicated that this method could be tailored to synthesize either carbon spheres or carbon nanotubes of specific diameters and quality. Finally, in an attempt to synthesize aligned carbon nanotubes, catalyst supports {characterized using Brunauer-Emmett-Teller analysis (BET)} namely; silica, alumina and magnesium oxide were used. Although this was not successful for the synthesis of aligned CNTs under the conditions used, alumina showed the most promise. / Mr. S. Durbach Dr. R. W. Krause
240

Nanomaterial modified electrodes : optimization of voltammetric sensors for pharmaceutical and industrial application

Brimecombe, Rory Dennis January 2011 (has links)
Nanomaterials, in particular carbon nanotubes have been shown to exhibit favourable properties for the enhancement of electrochemical detection of target analytes in complex matrices. There is however scope for improvement in terms of the optimization thereof in electrochemical sensors surface modification. The aim of this thesis was to examine methods that would result in increased current response, lowered passivation and application of such modified surfaces with application to pharmaceutically and industrially relevant analytes. Current methods for enhancing the performance of carbon nanotubes include acid functionalization which not only increases the hydrophilicity of the nanotubes, and consequently their ability to provide stable (aqueous) suspensions, but also introduces electrochemically active sites. This particular approach is however not normalized in the literature. Over-exposure to acid treatment results in loss of structural integrity of the carbon nanotubes, and as such a fine balance exists between achieving these dual outcomes. Guided by high resolution scanning electron microscopy, atomic force microscopy, voltammetric and impedance studies, this thesis examined the role of the length of time of the acid functionalization process as well as the impact of activation of carbon nanotubes and fullerenes on electrochemical sensor performance. Based on desired charge transfer resistances, rate transfer coefficients and sensitivity towards redox probes the optimal length of acid functionalization for multiwalled carbon nanotubes was 9 hours and 4 hours for single-walled carbon nanotubes. Further improvements in the desired outcomes were achieved through electrochemical activation of the modified electrode surface by cycling in the presence of catechol, in a novel approach. By employing electrochemical impedance spectroscopy it was observed that catechol activation resulted in lowered charge transfer resistance, before and after activation, with functionalized multi-walled carbon nanotubes (9 hours) exhibiting the greatest decrease of 90 % and functionalized single-walled carbon nanotubes (4 hours), a 50 % decrease. Corresponding increases in the heterologous rate transfer coefficient showed a 770 % increase for functionalized multi-walled carbon nanotubes (9 hours), following catechol activation. Comparative observations for fullerenes following partial reduction in potassium hydroxide yielded a 30 % decrease in charge transfer resistance, with an increased heterologous rate transfer coefficient at a fullerene modified surface The performance of the nanomaterial modified electrodes was applied to the detection of wortmannin with applications in bioprocess control and in the pharmaceutical sector as well as to the detection and monitoring of the industrial dye Reactive red. Of particular relevance to these analytes was the assessment of the nanomaterial modified electrodes for enhanced stability, reproducibility, sensitivity and decreased passivation effects. In this study the first known account of wortmannin detection through electrochemical methods is reported. Voltammetric characterization of wortmannin revealed an irreversible cathodic process with a total number of 4 electrons and a diffusion coefficient of 1.19 x 10-7 cm².s⁻¹. At a functionalized multiwalled carbon nanotubes modified glassy carbon electrode a limit of detection of 0.128 nmol.cm⁻³ was obtained, and with limited surface passivation the detection scheme afforded pertinent analyses in biological media representing a substantial improvement over chromatographic detection methods. This study also provided the first account of the voltammetric detection of reactive red, competing favourably with traditional spectroscopic methods for monitoring biodegradation of this compound in real time.

Page generated in 0.0789 seconds