• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Template Synthesis of Tubular Sn-Based Nanostructures for Lithium Ion Storage

Wang, Yong, Zeng, Hua Chun, Lee, Jim Yang 01 1900 (has links)
We report herewith the preparation of SnO₂ nanotubes with very good shape and size control, and with and without a carbon nanotube overlayer, The SnO₂-core/carbon-shell nanotubes are excellent reversible Li ion storage compounds combining the best features of carbon (cyclability) and SnO₂ (capacity) to deliver a high specific capacity (~540-600 mAh/g) simultaneous with good cyclability (0.0375% capacity loss per cycle). / Singapore-MIT Alliance (SMA)
2

Hierarchical TiO₂–SnO₂–graphene aerogels for enhanced lithium storage

Han, Sheng, Jiang, Jianzhong, Huang, Yanshan, Tang, Yanping, Cao, Jing, Wu, Dongqing, Feng, Xinliang 13 January 2020 (has links)
Three-dimensional (3D) TiO₂–SnO₂–graphene aerogels (TTGs)were built up from the graphene oxide nanosheets supported with both TiO₂ and SnO₂ nanoparticles (NPs) via a facile hydrothermal assembly process. The resulting TTGs exhibit a 3D hierarchical porous architecture with uniform distribution of SnO₂ and TiO₂ NPs on the graphene surface, which not only effectively prevents the agglomeration of SnO₂ NPs, but also facilitates the fast ion/electron transport in 3D pathways. As the anode materials in lithium ion batteries (LIBs), TTGs manifest a high reversible capacity of 750 mA h g⁻¹ at 0.1 A g⁻¹ for 100 cycles. Even at a high current density of 1 A g⁻¹, a reversible capacity of 470mA h g⁻¹ can still be achieved from the TTG based LIB anode over 150 cycles.
3

A two-dimensional hybrid with molybdenum disulfide nanocrystals strongly coupled on nitrogen-enriched graphene via mild temperature pyrolysis for high performance lithium storage

Tang, Yanping, Wu, Dongqing, Mai, Yiyong, Pan, Hao, Cao, Jing, Yang, Chongqing, Zhang, Fan, Feng, Xinliang 16 December 2019 (has links)
A novel 2D hybrid with MoS₂ nanocrystals strongly coupled on nitrogen-enriched graphene (MoS₂/NGg-C₃N₄) is realized by mild temperature pyrolysis (550 °C) of a self-assembled precursor (MoS₃/g-C₃N₄–H⁺/GO). With rich active sites, the boosted electronic conductivity and the coupled structure, MoS₂/NGg₋C₃N₄ achieves superior lithium storage performance.

Page generated in 0.0693 seconds