Spelling suggestions: "subject:"[een] NEGATIVE PERMITTIVITY"" "subject:"[enn] NEGATIVE PERMITTIVITY""
1 |
[en] VIRTUAL MAGNETIC TRANSMISSION LINES / [pt] LINHAS DE TRANSMISSÃO MAGNÉTICAS VIRTUAISJORGE VIRGILIO DE ALMEIDA 16 November 2017 (has links)
[pt] Nos últimos anos, tem aumentado o interesse no uso da transmissão de energia sem fio por acoplamento indutivo em muitas aplicações. Uma das maiores limitações dessa tecnologia é a distância de operação reduzida. Alguns trabalhos recentes sugerem usar materiais artificiais conhecidos como metamateriais para aprimorar a eficiência da transferência de potência ao longo da distância. Devido às suas propriedades eletromagnéticas únicas, tais como permeabilidade magnética negativa, metamateriais podem ser usados para amplificar as ondas evanescentes do campo próximo. No presente trabalho, é estudado o uso de metamateriais eletromagnéticos para aumentar o acoplamento indutivo por meio da amplificação do campo próximo. São apresentados cálculos analíticos e simulações dos metamateriais propostos. O melhoramento da eficiência na transferência de potência é apoiado por evidências experimentais. / [en] Over recent years, the interest in using inductive wireless power transmission for many applications has grown. One of the major limitations of this technology is the reduced operating distance. Some recent works have suggested using artificial materials known as metamaterials to improve the power transfer efficiency over distance. Due to their unique electromagnetic properties, such as negative permeability, metamaterials can be used to enhance the evanescent waves of the near field. In the present work, the usage of an electromagnetic metamaterial to increase the inductive coupling by means of enhanced evanescent waves is studied. Analytical calculations and numerical simulations of the proposed metamaterial are presented. The improvement of the power transfer efficiency is supported by empirical evidences.
|
2 |
Theoretical Investigation Of Metamaterials: Srr Structures And Periodic Arrays Of Thin Conducting WiresAtes, Kazim Ozan 01 May 2008 (has links) (PDF)
In recent years, there has been an increasing interest on left handed metamaterials because of their possible innovative applications. The pioneer study introducing such materials was brought out by V. G. Veselago in 1968 [1]. In his work, Veselago proposed a medium having simultaneously negative electric permittivity and magnetic permeability and investigated its electromagnetic characteristics. He found out that the electric field, magnetic field and the propagation vector form a left handed triplet, thus named such materials as &ldquo / Left Handed Materials&rdquo / . Despite the significance of Veselago&rsquo / s inferences, the metamaterial theory stayed dormant for nearly 30 years. Towards the end of 1990s, the physically realizable left handed materials were built as the combination of two periodical structures / Split Ring Resonators (SRRs) and metallic thin wire arrays [4-5].
In this thesis, electrical and magnetic characteristics of the left handed metamaterials are theoretically investigated by using the analytical models for their permittivity and permeability functions with respect to frequency. For this purpose, first, two basic metamaterial structures / the Split Ring Resonators and Thin Metallic Wire Arrays are studied individually and their electrical and magnetic characteristics are examined. Finally, the composite left handed structure containing both SRRs and thin wires is studied to investigate the resulting simultaneous resonance properties and to estimate their overall effective permeability and permittivity functions.
|
3 |
Linear and Nonlinear Functions of Plasmas in Electromagnetic Metamaterials / 電磁メタマテリアルにおけるプラズマの線形及び非線形機能Iwai, Akinori 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21732号 / 工博第4549号 / 新制||工||1709(附属図書館) / 京都大学大学院工学研究科電気工学専攻 / (主査)教授 大村 善治, 教授 松尾 哲司, 教授 竹内 繁樹 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
4 |
Metamaterial inspired improved antennas and circuitsBrito, Davi Bibiano 06 December 2010 (has links)
Made available in DSpace on 2014-12-17T14:54:58Z (GMT). No. of bitstreams: 1
DaviBB_DISSERT_1-70.pdf: 4567680 bytes, checksum: 150ff5afc1806ca374278b4c00a1f5a3 (MD5)
Previous issue date: 2010-12-06 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / Metamaterials exhibiting negative refraction have attracted a great amount of attention
in recent years mostly due to their exquisite electromagnetic properties. These materials are
artificial structures that exhibit characteristics not found in nature. It is possible to obtain a
metamaterial by combining artificial structures periodically. We investigated the unique
properties of Split Ring Resonators, High impedance Surfaces and Frequency Selective
Surfaces and composite metamaterials. We have successfully demonstrated the practical use
of these structures in antennas and circuits. We experimentally confirmed that composite
metamaterial can improve the performance of the structures considered in this thesis, at the
frequencies where electromagnetic band gap transmission takes place
|
5 |
A comprehensive survey of "metamaterial transmission-line based antennas: design, challenges, and applications"Alibakhshikenari, M., Virdee, B.S., Azpilicueta, L., Naser-Moghadasi, M., Akinsolu, M.O., See, C.H., Liu, B., Abd-Alhameed, Raed, Falcone, F., Huyen, I., Denidni, T.A., Limiti, E. 03 August 2020 (has links)
Yes / In this review paper, a comprehensive study on the concept, theory, and applications of composite right/left-handed transmission lines (CRLH-TLs) by considering their use in antenna system designs have been provided. It is shown that CRLH-TLs with negative permittivity (ε <; 0) and negative permeability (μ <; 0) have unique properties that do not occur naturally. Therefore, they are referred to as artificial structures called “metamaterials”. These artificial structures include series left-handed (LH) capacitances (C L ), shunt LH inductances (L L ), series right-handed (RH) inductances (LR), and shunt RH capacitances (CR) that are realized by slots or interdigital capacitors, stubs or via-holes, unwanted current flowing on the surface, and gap distance between the surface and ground-plane, respectively. In the most cases, it is also shown that structures based on CRLH metamaterial-TLs are superior than their conventional alternatives, since they have smaller dimensions, lower-profile, wider bandwidth, better radiation patterns, higher gain and efficiency, which make them easier and more cost-effective to manufacture and mass produce. Hence, a broad range of metamaterial-based design possibilities are introduced to highlight the improvement of the performance parameters that are rare and not often discussed in available literature. Therefore, this survey provides a wide overview of key early-stage concepts of metematerial-based designs as a thorough reference for specialist antennas and microwave circuits designers. To analyze the critical features of metamaterial theory and concept, several examples are used. Comparisons on the basis of physical size, bandwidth, materials, gain, efficiency, and radiation patterns are made for all the examples that are based on CRLH metamaterialTLs. As revealed in all the metematerial design examples, foot-print area decrement is an important issue of study that have a strong impact for the enlargement of the next generation wireless communication systems. / This work was supported in part by the Ministerio de Ciencia, Innovación y Universidades, Gobierno de España (MCIU/AEI/FEDER, UE) under Grant RTI2018-095499-B-C31, in part by the Innovation Programme under Grant H2020-MSCA-ITN-2016 SECRET-722424, and in part by the financial support from the U.K. Engineering and Physical Sciences Research Council (EPSRC) under Grant EP/E022936/1.
|
Page generated in 0.0302 seconds