Spelling suggestions: "subject:"[een] NOISE"" "subject:"[enn] NOISE""
111 |
A Study of the Design Theory for Front-End CMOS Low Noise AmplifiersKuang-Yao, Peng 06 August 2003 (has links)
This thesis deals with two kinds of RF CMOS low noise amplifiers (LNA). The low power LNA and the image-reject LNA.
The impact of gain, noise figure, and stability on RF CMOS image-reject LNA has been studied. Through this study, the fundamental properties of image-reject LNA can be understood by a simple but physical concept.
A current-reuse RF CMOS source-degenerated cascode LNA is also presented, which adopts a combination of source-degenerated NMOS inverter and Cascode topology to improve gain and noise figure, the existent and well-studied technique from the design standpoint, makes optimization of the stage easy.
A modification of the proposed architecture is also presented, which adopts internal filters to achieve the image rejection without additional image-reject filters that degrade both noise figure and power consumption. It will be a good candidate for low power implementation of CMOS RF-IC.
Both circuits¡¦ parameters except noise figures are simulated using TSMC 0.25 um RF CMOS component models. The noise models considered here include induced gate noise, thermal noise and shot noise [5]. The current-reuse source-degenerated NMOS inverter LNA noise figure is 0.7 dB, forward gain is 16 dB, and IIP3 is -15 dBm. The low power image-reject LNA noise figure is 0.7 dB, forward gain is 16 dB, IIP3 is -16 dBm, and image rejection is 20 dB at 1.6 GHz. Both LNAs operate at 2.4 GHz and consume about 6 mA under a 2.5 V voltage supply.
|
112 |
Dynamic cutback optimizationJayaraman, Shankar 15 April 2010 (has links)
The focus of this thesis is to develop and evaluate a cutback noise minimization process - also known as dynamic cutback optimization - that considers engine spool down during thrust cutback and is consistent with ICAO and FAR Part 36 noise certification procedures.
Simplified methods for flyover EPNL prediction used by propulsion designers assume instantaneous thrust reduction and do not take into account the spooling down of the engine during the cutback procedure. The thesis investigates if there is an additional noise benefit that can be gained by modeling the engine spool down behavior. This in turn would improve the margin between predicted EPNL and Stage 4 noise regulations.
Modeling dynamic cutback also impacts engine design during the preliminary and detailed design stages. Reduced noise levels due to cutback may be traded for lower engine fan diameter, which in turn reduces weight, fuel burn, and cost.
|
113 |
Performance of coherent and noncoherent RAKE receivers with convolutional coding ricean fading and pulse-noise interference /Kowalske, Kyle. January 2004 (has links) (PDF)
Thesis (Doctor of Philosophy in Electrical Engineering)--Naval Postgraduate School, June 2004. / Thesis advisor(s): Clark Robertson. Includes bibliographical references (p. 85-87). Also available online.
|
114 |
A study of industrial hearing loss in Hong Kong : the contribution of impulsive noise characteristics /Hui, Yat-ming, Simon. January 1983 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1983.
|
115 |
Adaptive techniques for time series analysis of reactor noiseMcGevna, Vincent Gerard January 1980 (has links)
No description available.
|
116 |
HIGH LINEARITY UNIVERSAL LNA DESIGNS FOR NEXT GENERATION WIRELESS APPLICATIONS2013 December 1900 (has links)
Design of the next generation (4G) systems is one of the most active and important area of research and development in wireless communications. The 2G and 3G technologies will still co-exist with the 4G for a certain period of time. Other applications such as wireless LAN (Local Area Network) and RFID are also widely used. As a result, there emerges a trend towards integrating multiple wireless functionalities into a single mobile device. Low noise amplifier (LNA), the most critical component of the receiver front-end, determines the sensitivity and noise figure of the receiver and is indispensable for the complete system. To satisfy the need for higher performance and diversity of wireless communication systems, three LNAs with different structures and techniques are proposed in the thesis based on the 4G applications.
The first LNA is designed and optimized specifically for LTE applications, which could be easily added to the existing system to support different standards. In this cascode LNA, the nonlinearity coming from the common source (CS) and common gate (CG) stages are analyzed in detail, and a novel linear structure is proposed to enhance the linearity in a relatively wide bandwidth. The LNA has a bandwidth of 900MHz with the linearity of greater than 7.5dBm at the central frequency of 1.2GHz. Testing results show that the proposed structure effectively increases and maintains linearity of the LNA in a wide bandwidth. However, a broadband LNA that covers multiple frequency ranges appears more attractive due to system simplicity and low cost. The second design, a wideband LNA, is proposed to cover multiple wireless standards, such as LTE, RFID, GSM, and CDMA. A novel input-matching network is proposed to relax the tradeoff among noise figure and bandwidth. A high gain (>10dB) in a wide frequency range (1-3GHz) and a minimum NF of 2.5dB are achieved. The LNA consumes only 7mW on a 1.2V supply. The first and second LNAs are designed mainly for the LTE standard because it is the most widely used standard in the 4G communication systems. However, WiMAX, another 4G standard, is also being widely used in many applications. The third design targets on covering both the LTE and the WiMAX. An improved noise cancelling technique with gain enhancing structure is proposed in this design and the bandwidth is enlarged to 8GHz. In this frequency range, a maximum power gain of 14.5dB and a NF of 2.6-4.3dB are achieved. The core area of this LNA is 0.46x0.67mm2 and it consumes 17mW from a 1.2V supply.
The three designs in the thesis work are proposed for the multi-standard applications based on the realization of the 4G technologies. The performance tradeoff among noise, linearity, and broadband impedance matching are explored and three new techniques are proposed for the tradeoff relaxation. The measurement results indicate the techniques effectively extend the bandwidth and suppress the increase of the NF and nonlinearity at high frequencies. The three proposed structures can be easily applied to the wideband and multi-standard LNA design.
|
117 |
Rotary power lawn mower noiseClark, William Darwin 08 1900 (has links)
No description available.
|
118 |
Wave propagation in tyres and the resultant noise radiationKim, Gi-Jeon January 1998 (has links)
No description available.
|
119 |
Production, characteristics and abatement of noise from pneumatic machines.Savich, M. (Miron) January 1972 (has links)
No description available.
|
120 |
Propagation and reactive attenuation of low frequency sound in hard-walled ducts with and without flow / by C.R. FullerFuller, Christopher R. January 1978 (has links)
Typescript (photocopy) / xvi, 339 leaves : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.) Dept. of Mechanical Engineering, University of Adelaide, 1979
|
Page generated in 0.0548 seconds