• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] PROCESSING AND CHARACTERIZATION OF NYLON 11 NANOCOMPOSITES REINFORCED WITH TITANATES NANOTUBES MODIFIED BY SURFACTANTS / [pt] PROCESSAMENTO E CARACTERIZAÇÃO DE NANOCOMPÓSITOS DE NYLON 11 REFORÇADOS POR NANOTUBOS DE TITANATOS MODIFICADOS POR SURFACTANTES

RENATA FORTINI MOUSTAFA OSMAN 13 March 2019 (has links)
[pt] Processamento e Caracterização de Nanocompósitos de Nylon 11 reforçados por Nanotubos de Titanatos Modificados com Surfactantes estuda a influência da adição de nanotubos de titanato (TTNTs) nas propriedades mecânicas do Nylon 11 (Poliamida 11). De acordo com estudos prévios, espera-se que pequenas quantidades de TTNTs melhorem propriedades como resistência mecânica e rigidez. No entanto, a incorporação dessas nanopartículas também pode acarretar numa piora dessas propriedades, caso não haja uma dispersão eficaz na matriz polimérica. Assim sendo, também foram avaliados compósitos de Nylon 11 e nanotubos de titanato modificados com 2 tipos de surfactantes, um catiônico (CTAB) e outro aniônico (SDS) para investigação do efeito destes surfactantes na dispersão dos TTNTs e por consequência nas propriedades finais dos compósitos comparados ao Nylon 11 puro. Foi realizado também um estudo da dispersão dos nanotubos com e sem mistura com surfactante em água e butanol, em três intervalos de tempo, 15, 30 e 60 min a fim de se escolher os melhores parâmetros para a dispersão. Foram produzidos compósitos em uma microextrusora e uma microinjetora. Os compósitos com TTNTs tratados com CTAB apresentaram aumentos de 15 por cento e 10 por cento no módulo de elasticidade e os compósitos com TTNTs tratados com SDS apresentaram aumentos de 26 por cento e 20 por cento para essa mesma propriedade, respectivamente nas concentrações de 0.5 e 2 por cento wt de TTNTs, em relação ao Nylon 11 puro. / [en] Processing and Characterization of Nylon 11 Nanocomposites Reinforced with Titanates Nanotubes Modified by Surfactants has investigated the effect of titanate nanotubes (TTNTs) in the mechanical properties of Nylon 11 (polyamide 11) polymer. According to the existing literature small amounts of TTNTs in polymer matrix improve properties such as tensile strength and stiffness. However, the addition of these nanoparticles may also lead to a decrease of strength of the composite if the nanotubes are not well dispersed in the polymer matrix. Therefore, Nylon 11 composites with TTNTs treated with 2 kinds of surfactant - a cationic (CTAB) and an anionic (SDS) - were also investigated. The surfactants act as dispersion agents leading to a better dispersion state of nanotubes and as a final result, promote enhancement of composites mechanical properties. Also, the dispersion of nanotubes was studied with and without mixing surfactants in distilled water and butanol, in three different time intervals (15, 30 and 60 minutes) to assess the optimal dispersion parameters. Composites were produced in a microextruder and a microinjector. The composites with TTNTs treated with CTAB displayed an increase of 15 percent and 10 percent in the Young s Modulus and the composites with TTNTs treated with SDS displayed an increase of 26 percent and 20 percent in the same property, respectively in the concentrations of 0.5 and 2 percent wt of TTNTs, compared to pure Nylon 11.
2

[en] FUNCTIONALIZATION OF TITANATE NANOTUBES AND THEIR APPLICATION AS A REINFORCEMENT OF NYLON-11 MATRIX NANOCOMPOSITES / [pt] FUNCIONALIZAÇÃO DE NANOTUBOS DE TITANATO E SUA APLICAÇÃO COMO REFORÇO DE NANOCOMPÓSITOS DE MATRIZ NÁILON-11

PATRICIA ISABEL PONTON BRAVO 13 March 2019 (has links)
[pt] O objetivo deste trabalho foi estudar a funcionalização química de nanotubos de titanato (TTNTs) com 3-aminopropiltrietoxisilano, para uso como reforço de nanocompósitos de matriz náilon-11, com o intuito de melhorar a dispersão e compatibilidade destas nanocargas com a matriz polimérica. Foram sintetizadas duas amostras: TTNTs/H e TTNTs/L, com alto e baixo teor sódio respectivamente, funcionalizadas em uma solução etanol/água 95/5 v/v e água para avaliar o efeito do meio de reação na quantidade de silano enxertada na superfície dos TTNTs, expressa como densidade de grupos aminopropil por nm2 (NR). Os TTNTs funcionalizados foram caracterizados por espectroscopia de infravermelho, análise elementar de CHN, medição da área superficial específica, termogravimetria e microscopias eletrônicas de varredura e de transmissão. Foram fabricados nanocompósitos de matriz náilon-11 por microextrusão-microinjeção, reforçados com TTNTs de partida e funcionalizados em concentrações de 0.5, 1.0 e 2.0 porcento wt. Finalmente, foram avaliadas as propriedades mecânicas, térmicas e microestruturais dos nanocompósitos. Os resultados demonstraram a formação da ligação covalente Ti-O-Si e revelaram um maior valor de NR quando o meio de reação foi etanol/água para ambos os TTNTs. Os nanocompósitos reforçados com TTNTs/H funcionalizados em água e TTNTs/L silanizados em mistura etanol/água, em uma proporção de 2 porcento wt, apresentaram um incremento no módulo de elasticidade de 11 e 13 porcento respectivamente, com um decréscimo das propriedades no escoamento e um aumento na temperatura de degradação, quando comparados com o náilon-11 puro. O nanocompósito que apresentou a melhor dispersão foi o fabricado com 0.5 porcento wt. TTNTs/L silanizados em etanol/agua. / [en] The aim of this work was to study the chemical functionalization of titanate nanotubes (TTNTs) with 3-aminopropyltriethoxysilane for application as a reinforcement of nylon-11 matrix nanocomposites in order to increase the dispersion and compatibility between nanotubes and the polymer matrix. Two samples with high and low sodium content (TTNTs/H and TTNTs/L, respectively) were functionalized in a solution of ethanol/water 95/5 v/v and water to assess the effect of the reaction medium on the amount of silane grafted on the TTNTs surface, expressed as the density of aminopropyl groups per nm2 (NR). The functionalized nanotubes were characterized by infrared spectroscopy, CHN elemental analysis, measurement of the specific surface area, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy. Nylon-11 matrix nanocomposites were manufactured by microextrusionmicroinjection and reinforced with 0.5, 1.0 and 2.0 wt. percent of pristine and functionalized nanotubes. Finally, mechanical and thermal properties as well as the microstructure of the nanocomposites were evaluated. The results confirmed the Ti-O-Si covalent bond and showed a higher NR value when the silanization was performed in ethanol/water for both TTNTs. The nanocomposites reinforced with 2 wt. percent of TTNTs/H (silanized in water) and with TTNTs/L (silanized in ethanol/water) presented an enhancement on the Young s modulus of 11 and 13 percent, respectively when compared with the neat nylon-11. The yield properties of these nanocomposites decreased, but the degradation temperature was improved with the incorporation of the functionalized nanotubes. The nanocomposite prepared with 0.5 wt. percent TTNTs/L silanized in ethanol/water showed the best dispersion.
3

Novel functional polymeric nanomaterials for energy harvesting applications

Choi, Yeonsik January 2019 (has links)
Polymer-based piezoelectric and triboelectric generators form the basis of well-known energy harvesting methods that are capable of transforming ambient vibrational energy into electrical energy via electrical polarization changes in a material and contact electrification, respectively. However, the low energy conversion efficiency and limited thermal stability of polymeric materials hinder practical application. While nanostructured polymers and polymer-based nanocomposites have been widely studied to overcome these limitations, the performance improvement has not been satisfactory due to limitations pertaining to long-standing problems associated with polymeric materials; such as low crystallinity of nanostructured polymers, and in the case of nanocomposites, poor dispersion and distribution of nanoparticles in the polymer matrix. In this thesis, novel functional polymeric nanomaterials, for stable and physically robust energy harvesting applications, are proposed by developing advanced nanofabrication methods. The focus is on ferroelectric polymeric nanomaterials, as this class of materials is particularly well-suited for both piezoelectric and triboelectric energy harvesting. The thesis is broadly divided into two parts. The first part focuses on Nylon-11 nanowires grown by a template-wetting method. Nylon-11 was chosen due to its reasonably good ferroelectric properties and high thermal stability, relative to more commonly studied ferroelectric polymers such as polyvinylidene fluoride (PVDF) and polyvinylidene fluoride-trifluoroethylene (P(VDF-TrFE)). However, limitations in thin-film fabrication of Nylon-11 have led to poor control over crystallinity, and thus investigation of this material for practical applications had been mostly discontinued, and its energy harvesting potential never fully realised. The work in this thesis shows that these problems can be overcome by adopting nanoporous template-wetting as a versatile tool to grow Nylon-11 nanowires with controlled crystallinity. Since the template-grown Nylon-11 nanowires exhibit a polarisation without any additional electrical poling process by exploiting the nanoconfinement effect, they have been directly incorporated into nano-piezoelectric generators, exhibiting high temperature stability and excellent fatigue performance. To further enhance the energy harvesting capability of Nylon-11 nanowires, a gas -flow assisted nano-template (GANT) infiltration method has been developed, whereby rapid crystallisation induced by gas-flow leads to the formation of the ferroelectric δʹ-phase. The well-defined crystallisation conditions resulting from the GANT method not only lead to self-polarization but also increases average crystallinity from 29 % to 38 %. δʹ-phase Nylon-11 nanowires introduced into a prototype triboelectric generator are shown to give rise to a six-fold increase in output power density as observed relative to the δʹ-phase film-based device. Interestingly, based on the accumulated understanding of the template-wetting method, Nylon-11, and energy harvesting devices, it was found that thermodynamically stable α-phase Nylon-11 nanowires are most suitable for triboelectric energy generators, but not piezoelectric generators. Notably, definitive dipole alignment of α-phase nanowires is shown to have been achieved for the first time via a novel thermally assisted nano-template infiltration (TANI) method, resulting in exceptionally strong and thermally stable spontaneous polarization, as confirmed by molecular structure simulations. The output power density of a triboelectric generator based on α-phase nanowires is shown to be enhanced by 328 % compared to a δʹ-phase nanowire-based device under the same mechanical excitation. The second part of the thesis presents recent progress on polymer-based multi-layered nanocomposites for energy harvesting applications. To solve the existing issues related to poor dispersion and distribution of nanoparticles in the polymer matrix, a dual aerosol-jet printing method has been developed and applied. As a result, outstanding dispersion and distribution. Furthermore, this method allows precise control of the various physical properties of interest, including the dielectric permittivity. The resulting nanocomposite contributes to an overall enhancement of the device capacitance, which also leads to high-performance triboelectric generators. This thesis therefore presents advances in novel functional polymeric nanomaterials for energy harvesting applications, with improved performance and thermal stability. It further offers insight regarding the long-standing issues in the field of Nylon-11, template-wetting, and polymer-based nanocomposites.

Page generated in 0.0493 seconds