Spelling suggestions: "subject:"[een] OPTIMAL MORSE FUNCTION"" "subject:"[enn] OPTIMAL MORSE FUNCTION""
1 |
[en] ANALYSIS OF MORSE MATCHINGS: PARAMETERIZED COMPLEXITY AND STABLE MATCHING / [pt] ANÁLISE DE CASAMENTOS DE MORSE: COMPLEXIDADE PARAMETRIZADA E CASAMENTO ESTÁVEL16 December 2021 (has links)
[pt] A teoria de Morse relaciona a topologia de um espaço aos elementos críticos de uma função escalar definida nele. Isso vale tanto para a teoria clássica quanto para a versão discreta proposta por Forman em 1995. Essas teorias de Morse permitem caracterizar a topologia do espaço a partir de funções definidas nele, mas também permite estudar funções a partir de construções tipológicas derivadas dela, como por exemplo o complexo de Morse-Smale. Apesar da teoria de Morse discreta se aplicar para complexos celulares gerais de forma inteiramente combinatória, o que torna a teoria particularmente bem adaptada para o computador, as funções usadas na teoria não são amostragens de funções contínuas, mas casamentos especiais no grafo que codifica as adjacências no complexo celular, chamadas de casamentos de Morse. Quando usar essa teoria para estudar um espaço topológico, procura- se casamentos de Morse ótimos, i.e. com o menor número possível de elementos críticos, para obter uma informação topológica do complexo sem redundância. Na primeira parte desta tese, investiga-se a complexidade parametrizada de encontrar esses casamentos de Morse ótimos.
Por um lado, prova-se que o problema ERASABILITY, um problema fortemente relacionado à
encontrar casamentos de Morse ótimos, é W [P ]-completo. Por outro lado, um algoritmo é proposto para calcular casamentos de Morse ótimos em triangulações de 3-variedades, que é FPT no parâmetro do tree- width de seu grafo dual. Quando usar a teoria de Morse discreta para estudar uma função escalar definida no espaço, procura-se casamentos de Morse que capturam a informação geométrica dessa função. Na segunda parte é proposto uma construção de casamentos de Morse baseada em casamentos estáveis. As garantias teóricas sobre a relação desses casamentos com a geometria são elaboradas a partir de provas surpreendentemente simples que aproveitam da caracterização local do casamento estável. A construção e as suas garantias funcionam em qualquer dimensão. Finalmente, resultados mais fortes são obtidos quando a função for suave discreta, uma noção definida nesta tese. / [en] Morse theory relates the topology of a space to the critical elements of a
scalar function defined on it. This applies in both the classical theory and
a discrete version of it defined by Forman in 1995. Those Morse theories
permit to characterize a topological space from functions defined on it, but
also to study functions based on topological constructions it implies, such as
the Morse-Smale complex. While discrete Morse theory applies on general
cell complexes in an entirely combinatorial manner, which makes it suitable
for computation, the functions it considers are not sampling of continuous
functions, but special matchings in the graph encoding the cell complex
adjacencies, called Morse matchings.
When using this theory to study a topological space, one looks for optimal
Morse matchings, i.e. one with the smallest number of critical elements, to
get highly succinct topological information about the complex. The first
part of this thesis investigates the parameterized complexity of finding such
optimal Morse matching. On the one hand the Erasability problem, a
closely related problem to finding optimal Morse matchings, is proven to be
W[P]-complete. On the other hand, an algorithm is proposed for computing
optimal Morse matchings on triangulations of 3-manifolds which is fixed parameter
tractable in the tree-width of its dual graph.
When using discrete Morse theory to study a scalar function defined on
the space, one looks for a Morse matching that captures the geometric
information of that function. The second part of this thesis introduces a
construction of Morse matchings based on stable matchings. The theoretical
guarantees about the relation of such matchings to the geometry are
established through surprisingly simple proofs that benefits from the local
characterization of the stable matching. The construction and its guarantees
work in any dimension. Finally stronger results are obtained if the function
is discrete smooth on the complex, a notion defined in this thesis.
|
Page generated in 0.0395 seconds