• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Foundation of Density Functionals in the Presence of Magnetic Field

Laestadius, Andre January 2014 (has links)
This thesis contains four articles related to mathematical aspects of Density Functional Theory. In Paper A, the theoretical justification of density methods formulated with current densities is addressed. It is shown that the set of ground-states is determined by the ensemble-representable particle and paramagnetic current density. Furthermore, it is demonstrated that the Schrödinger equation with a magnetic field is not uniquely determined by its ground-state solution. Thus, a wavefunction may be the ground-state of two different Hamiltonians, where the Hamiltonians differ by more than a gauge transformation. This implies that the particle and paramagnetic current density do not determine the potentials of the system and, consequently, no Hohenberg-Kohn theorem exists for Current Density Functional Theory formulated with the paramagnetic current density. On the other hand, by instead using the particle density as data, we show that the scalar potential in the system's Hamiltonian is determined for a fixed magnetic field. This means that the Hohenberg-Kohn theorem continues to hold in the presence of a magnetic field, if the magnetic field has been fixed. Paper B deals with N-representable density functionals that also depend on the paramagnetic current density. Here the Levy-Lieb density functional is generalized to include the paramagnetic current density. It is shown that a wavefunction exists that minimizes the "free" Hamiltonian subject to the constraints that the particle and paramagnetic current density are held fixed. Furthermore, a convex and universal current density functional is introduced and shown to equal the convex envelope of the generalized Levy-Lieb density functional. Since this functional is convex, the problem of finding the particle and paramagnetic current density that minimize the energy is related to a set of Euler-Lagrange equations. In Paper C, an N-representable Kohn-Sham approach is developed that also include the paramagnetic current density. It is demonstrated that a wavefunction exists that minimizes the kinetic energy subject to the constraint that only determinant wavefunctions are considered, as well as that the particle and paramagnetic current density are held fixed. Using this result, it is then shown that the ground-state energy can be obtained by minimizing an energy functional over all determinant wavefunctions that have finite kinetic energy. Moreover, the minimum is achieved and this determinant wavefunction gives the ground-state particle and paramagnetic current density. Lastly, Paper D addresses the issue of a Hohenberg-Kohn variational principle for Current Density Functional Theory formulated with the total current density. Under the assumption that a Hohenberg-Kohn theorem exists formulated with the total current density, it is shown that the map from particle and total current density to the vector potential enters explicitly in the energy functional to be minimized. Thus, no variational principle as that of Hohenberg and Kohn exists for density methods formulated with the total current density. / <p>QC 20140523</p>
2

[pt] DETECÇÃO ÓPTICA DE PROPRIEDADES GEOMÉTRICAS QUÂNTICAS EM SUPERCONDUTORES SINGLETOS / [en] OPTICAL DETECTION OF QUANTUM GEOMETRICAL PROPERTIES IN SINGLET SUPERCONDUCTORS

DAVID FERNANDO PORLLES LOPEZ 02 July 2024 (has links)
[pt] A geometria quântica na física da matéria condensada nos permite entender várias propriedades geométricas dos estados da zona de Brillouin, como a curvatura de Berry e a métrica quântica. Especialmente em relação a esta última, foram observados estudos que mostram sua relação com a supercondutividade. Motivados por estas investigações, esta dissertação visa investigar as propriedades geométricas quânticas de supercondutores singletos, como os tipos s-wave e d-wave, e identificar sua relação com várias respostas eletromagnéticas. Começamos mostrando a descrição desses supercondutores através da teoria do campo médio, posteriormente analisando sua métrica quântica, que é definida pela sobreposição de dois estados de quasihole em momentos ligeiramente diferentes. Subsequentemente, estudamos o número de fidelidade, que é definido como a integração de momento da métrica quântica e representa a distância média entre estados de quasihole vizinhos. Além disso, expressamos esse número de fidelidade como um marcador de fidelidade definido localmente em cada sítio da rede, o que nos permite observar o efeito de impurezas não magnéticas nesse marcador. Para supercondutores de tipo s-wave, mostramos que respostas eletromagnéticas como a absorção no infravermelho estão relacionadas à métrica quântica, enquanto, por outro lado, a corrente paramagnética e a função dielétrica estão relacionadas ao número de fidelidade, que por sua vez é determinado pelo comprimento de coerência. Por outro lado, para supercondutores de tipo d-wave, observamos que sua métrica quântica mostra um comportamento singular e que seu número de fidelidade diverge. O resultado mais relevante desta dissertação é que descobrimos que supercondutores singletos, descritos pela teoria do campo médio BCS, exibem uma métrica quântica não trivial, e que para supercondutores de tipo s-wave as respostas eletromagnéticas mencionadas estão diretamente relacionadas à geometria quântica, o que não havia sido encontrado anteriormente. / [en] Quantum geometry in condensed matter physics allows us to understand various geometric properties of the Brillouin zone states, such as the Berry curvature and the quantum metric. Especially in relation to the latter, studies have been observed that show its relationship with superconductivity. Motivated by these investigations, this dissertation aims to investigate the quantum geometric properties of singlet superconductors, such as s-wave and d-wave types, and identify their relation to various electromagnetic responses. We begin by showing the description of these superconductors through mean field theory, subsequently analyzing their quantum metric, which is defined by the overlap of two quasihole states at slightly different momenta. Subsequently, we study the fidelity number, which is defined as the momentum integration of the quantum metric and represents the average distance between neighboring quasihole states. Furthermore, we express this fidelity number as a fidelity marker defined locally at each lattice site, which allows us to observe the effect of non-magnetic impurities on this marker. For s-wave superconductors, we show that electromagnetic responses such as infrared absorption are related to the quantum metric, while on the other hand, the paramagnetic current and the dielectric function are related to the fidelity number, which in turn is determined by the coherence length. On the other hand, for d-wave super-conductors, we observe that their quantum metric shows a singular behavior and that their fidelity number diverges. The most relevant result of this dissertation is that we have discovered that singlet superconductors, described by the BCS mean field theory, exhibit a nontrivial quantum metric, and that for s-wave superconductors the aforementioned electromagnetic responses are directly related to the quantum geometry, which has not been found previous.

Page generated in 0.0456 seconds