• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 91
  • 59
  • 18
  • 18
  • 14
  • 10
  • 5
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 290
  • 290
  • 290
  • 57
  • 54
  • 53
  • 52
  • 40
  • 39
  • 36
  • 35
  • 35
  • 32
  • 31
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Design of Non-Uniform Linear Array via Linear Programming and Particle Swarm Optimization and Studies on Phased Array Calibration

Bai, Hua 07 November 2014 (has links)
For a linear array, the excitation coefficients of each element and its geometry play an important role, because they will determine the radiation pattern of the given array. Side Lobe Level (SLL) is one of the key parameters to evaluate the radiation pattern of the array. Generally speaking, we desire SLL to be as low as possible. For the linear array with uniform spacing, there are some classic methods to calculate the excitation coefficients to make the radiation pattern satisfy the given requirements. For the linear array with non-uniform spacing, linear programming and particle swarm optimization are proposed to calculate the excitation coefficients to make the array get minimum SLL in this thesis. They are demonstrated for symmetric and asymmetric array in the first part of this thesis. In the second part of this thesis, a simple method is proposed for correcting excitation coefficients of a linear phased array. This proposed method corrects the coefficients through using the Normalized Least Means Squares(NLMS) algorithm, dither signal and a near-field sensor being used for sensing the field emitted by the array. The advantage of this proposed method is that it avoids the problem of estimating the largest eigenvalue of the coefficient matrix to get optimal step size. Its robustness in different environments is demonstrated as well as the effect of noise with various Signal-to-Noise Ratio (SNR), and mutual coupling. In addition, the effect of using discrete dither signal to the array is considered, because the continuous dither signal cannot be generated in practice.
132

Filtr s akustickou povrchovou vlnou / Surface acoustic wave filter

Tichý, Jakub January 2010 (has links)
The theoretical part of this thesis deals with principles and characteristics of the surface acoustic wave filter. It explained the principle of magnetostriction and piezoelectric effect, which uses a filter. In the practical part in the program Comsol Multiphysics are made three simple models of SAW filter. Some modes are founded and are compared to previously known results. In the next phase of project is further studied using the parametric analysis. In the last phase of project is applied global optimization PSO at admittance characteristic from simple 2D structure. The results are compared with the commercially produced devices.
133

Contribution aux méthodes hybrides d'optimisation heuristique : Distribution et application à l'interopérabilité des systèmes d'information / Contribution to hybrid heuristic optimization methods : Distribution and application on information systems interoperability

El Hami, Norelislam 23 June 2012 (has links)
Les travaux présentés dans ce mémoire proposent une nouvelle méthode d'optimisation globale dénommée MPSO-SA. Cette méthode hybride est le résultat d'un couplage d'une variante d'algorithme par Essaim de particules nommé MPSO (Particle Swarm Optimization) avec la méthode du recuit simulé nommé SA (Simulted Annealing). Les méthodes stochastiques ont connu une progression considérable pour la résolution de problèmes d'optimisation. Parmi ces méthodes, il y a la méthode Essaim de particules (PSO° qui est développée par [Eberhart et Kennedy (1995)]. Quant à la méthode recuit simulé (SA), elle provient du processus physique qui consiste à ordonner les atomes d'un cristal afin de former une structure cristalline parfaite. Pour illustrer les performances de la méthode MPSO-SA proposée, une comparaison avec MPSO et SA est effectuée sur des fonctions tests connues dans la littérature. La métode MPSO-SA est utilisée pour la résolution des problèmes réels interopérabilité des systèmes d'information, ainsi qu'aux problèmes d'optimisation et de fiabilité des structures mécaniques. / The work presented in this PhD thesis contibutes to a new method for a modified particle swarm optimization algorith (MPSO) combined with a simulating annealing algorithm (SA). MPSO is known as an efficient approach with a high performance of solving optimization problems in many research fields. It is a population intelligence algorithm [Eberhart et Kennedy (1995)] inspired by social behavior simulations of bird flocking. Considerable research work on classical method PSO (Particle Swarm Optimization) has been done to improve the performance of this method. Therefore, the propose hybrid optimization algorithms MPSOSA use the combination of MPSO and simulating annealing SA. This method has the avantage to provide best results comparing with all heuristics methods PSO and SA. In this matter, a benchmark of eighteen well-known functions is given. These functions present different situations of finding the global minimum with gradual difficulties. Numerical results presented, in this paper, show the robustness of the MPSOSA algorithm. Numerical comparisons with three algorithms namely, Simulating Annealing, Modified Particle swarm optimization and MPSO-SA show that hybrid algorithm offers better results. This method (MPSO-SA) treats a wide range of optimization problems, in information systems interoperability and in structural optimization field.
134

A learning framework for zero-knowledge game playing agents

Duminy, Willem Harklaas 17 October 2007 (has links)
The subjects of perfect information games, machine learning and computational intelligence combine in an experiment that investigates a method to build the skill of a game-playing agent from zero game knowledge. The skill of a playing agent is determined by two aspects, the first is the quantity and quality of the knowledge it uses and the second aspect is its search capacity. This thesis introduces a novel representation language that combines symbols and numeric elements to capture game knowledge. Insofar search is concerned; an extension to an existing knowledge-based search method is developed. Empirical tests show an improvement over alpha-beta, especially in learning conditions where the knowledge may be weak. Current machine learning techniques as applied to game agents is reviewed. From these techniques a learning framework is established. The data-mining algorithm, ID3, and the computational intelligence technique, Particle Swarm Optimisation (PSO), form the key learning components of this framework. The classification trees produced by ID3 are subjected to new post-pruning processes specifically defined for the mentioned representation language. Different combinations of these pruning processes are tested and a dominant combination is chosen for use in the learning framework. As an extension to PSO, tournaments are introduced as a relative fitness function. A variety of alternative tournament methods are described and some experiments are conducted to evaluate these. The final design decisions are incorporated into the learning frame-work configuration, and learning experiments are conducted on Checkers and some variations of Checkers. These experiments show that learning has occurred, but also highlights the need for further development and experimentation. Some ideas in this regard conclude the thesis. / Dissertation (MSc)--University of Pretoria, 2007. / Computer Science / MSc / Unrestricted
135

Design and Implementation of an Adaptive Cruise Control Algorithm

Kirby, Timothy Joseph January 2021 (has links)
No description available.
136

Paralelizace evolučních algoritmů pomocí GPU / GPU Parallelization of Evolutionary Algorithms

Valkovič, Patrik January 2021 (has links)
Graphical Processing Units stand for the success of Artificial Neural Networks over the past decade and their broader application in the industry. Another promising field of Artificial Intelligence is Evolutionary Algorithms. Their parallelization ability is well known and has been successfully applied in practice. However, these attempts focused on multi-core and multi-machine parallelization rather than on the GPU. This work explores the possibilities of Evolutionary Algorithms parallelization on GPU. I propose implementation in PyTorch library, allowing to execute EA on both CPU and GPU. The proposed implementation provides the most common evolutionary operators for Genetic Algorithms, Real-Coded Evolutionary Algorithms, and Particle Swarm Op- timization Algorithms. Finally, I show the performance is an order of magnitude faster on GPU for medium and big-sized problems and populations. 1
137

Inteligence skupiny / Swarm Intelligence

Winklerová, Zdenka January 2015 (has links)
The intention of the dissertation is the applied research of the collective ( group ) ( swarm ) intelligence . To demonstrate the applicability of the collective intelligence, the Particle Swarm Optimization ( PSO ) algorithm has been studied in which the problem of the collective intelligence is transferred to mathematical optimization in which the particle swarm searches for a global optimum within the defined problem space, and the searching is controlled according to the pre-defined objective function which represents the solved problem. A new search strategy has been designed and experimentally tested in which the particles continuously adjust their behaviour according to the characteristics of the problem space, and it has been experimentally discovered how the impact of the objective function representing a solved problem manifests itself in the behaviour of the particles. The results of the experiments with the proposed search strategy have been compared to the results of the experiments with the reference version of the PSO algorithm. Experiments have shown that the classical reference solution, where the only condition is a stable trajectory along which the particle moves in the problem space, and where the influence of a control objective function is ultimately eliminated, may fail, and that the dynamic stability of the trajectory of the particle itself is not an indicator of the searching ability nor the convergence of the algorithm to the true global solution of the solved problem. A search strategy solution has been proposed in which the PSO algorithm regulates its stability by continuous adjustment of the particles behaviour to the characteristics of the problem space. The proposed algorithm influenced the evolution of the searching of the problem space, so that the probability of the successful problem solution increased.
138

Database Tuning using Evolutionary and Search Algorithms

Raneblad, Erica January 2023 (has links)
Achieving optimal performance of a database can be crucial for many businesses, and tuning its configuration parameters is a necessary step in this process. Many existing tuning methods involve complex machine learning algorithms and require large amounts of historical data from the system being tuned. However, training machine learning models can be problematic if a considerable amount of computational resources and data storage is required. This paper investigates the possibility of using less complex search algorithms or evolutionary algorithms to tune database configuration parameters, and presents a framework that employs Hill Climbing and Particle Swarm Optimization. The performance of the algorithms are tested on a PostgreSQL database using read-only workloads. Particle Swarm Optimization displayed the largest improvement in query response time, improving it by 26.09% compared to using the configuration parameters' default values. Given the improvement shown by Particle Swarm Optimization, evolutionary algorithms may be promising in the field of database tuning.
139

A Multi-State Particle Swarm Optimization model to find the golden hour coverage of MSUs

Holm, Anton, Modin Bärzén, Gabriel January 2023 (has links)
When suffering a stroke, the time to treatment is one of the key factors to increase the chance of desirable recovery. To ensure proper treatment, a diagnosis has to be made before treatment can begin. The potential consequences of treating a misdiagnosis can be severely harmful or even deadly. A Mobile Stroke Unit (MSU) is an ambulance equipped with the necessary tools to diagnose and begin treatment of stroke before reaching a hospital, reducing the time to initial treatment. We contribute a model to identify suitable locations of MSUs within a geographical region. We propose a Multi-State Particle Swarm Optimization (MBPSO) algorithm variation to solve this problem. Furthermore, we demonstrate the use of the model in a scenario created in the Southern Healthcare Region of Sweden in order to properly communicate and evaluate the model. The objective of our MBPSO variation is to find locations within a geographical region which are suitable for placing MSUs. The results of the solution shows that populations previously not covered by stroke care within one hour of an emergency call has the potential to be covered up to 81%.
140

Detection And Classification Of Buried Radioactive Materials

Wei, Wei 09 December 2011 (has links)
This dissertation develops new approaches for detection and classification of buried radioactive materials. Different spectral transformation methods are proposed to effectively suppress noise and to better distinguish signal features in the transformed space. The contributions of this dissertation are detailed as follows. 1) Propose an unsupervised method for buried radioactive material detection. In the experiments, the original Reed-Xiaoli (RX) algorithm performs similarly as the gross count (GC) method; however, the constrained energy minimization (CEM) method performs better if using feature vectors selected from the RX output. Thus, an unsupervised method is developed by combining the RX and CEM methods, which can efficiently suppress the background noise when applied to the dimensionality-reduced data from principle component analysis (PCA). 2) Propose an approach for buried target detection and classification, which applies spectral transformation followed by noisejusted PCA (NAPCA). To meet the requirement of practical survey mapping, we focus on the circumstance when sensor dwell time is very short. The results show that spectral transformation can alleviate the effects from spectral noisy variation and background clutters, while NAPCA, a better choice than PCA, can extract key features for the following detection and classification. 3) Propose a particle swarm optimization (PSO)-based system to automatically determine the optimal partition for spectral transformation. Two PSOs are incorporated in the system with the outer one being responsible for selecting the optimal number of bins and the inner one for optimal bin-widths. The experimental results demonstrate that using variable bin-widths is better than a fixed bin-width, and PSO can provide better results than the traditional Powell’s method. 4) Develop parallel implementation schemes for the PSO-based spectral partition algorithm. Both cluster and graphics processing units (GPU) implementation are designed. The computational burden of serial version has been greatly reduced. The experimental results also show that GPU algorithm has similar speedup as cluster-based algorithm.

Page generated in 0.046 seconds