Spelling suggestions: "subject:"[een] PASTURE BIOMASS"" "subject:"[enn] PASTURE BIOMASS""
1 |
<b>HIGH SOLIDS LOADING AQUEOUS SLURRY FORMATION OFCORN STOVER BEFORE PRETREATMENT IN A FED-BATCH BIOREACTOR</b>Diana M Ramirez Gutierrez (8158146) 17 April 2024 (has links)
<p dir="ltr">Feedstock variability represents a challenge in the adoption of lignocellulosic biomass for biofuels and biochemicals production, due to the differences in critical chemical and physical properties like lignin content, and water absorption respectively. Thus, difficult continuous manufacturing processes in biorefineries, hinder the transition from liquid feedstocks to renewable materials that consisting of solid particles. Modeling of flow properties based on rheological measurements of treated biomass is a quantitative metric for identifying if different feedstocks form pumpable slurries. Additionally, the correlation of yield stress to physical and chemical properties gives a measure that accounts for the variability in the processing design. This research models rheological properties and relates these to compositional data from different non-pretreated fractions of corn stover biomass slurries. Slurries were formed with solids concentrations of 300 g/L in a 6 hours fed-batch process using the commercial enzymes Celluclast 1.5L or Ctec-2 at 1FPU/g or 3 FPU/g of dry solids, basis to enable the liquefaction (i.e., slurry-forming) mechanism. We found that insoluble lignin content of the different fractions was related to water absorption in pellets and free water on slurries and that free water was a good indicator of the potential for a material to form slurry. Higher flowability (lower yield stress) was found at higher content of lignin, particularly for materials containing 26% lignin where yield stress was reduced to 254Pa when compared with mixtures of 14% lignin that presented yield stresses of around 4000 Pa. We show that rheology modeling linked to compositional characteristics for biomass slurries can be used to predict material flow behavior in a biorefinery to optimize and achieve high solids loadings that enhance the production of ethanol for biofuels. This insight and the ability to form high concentration slurries before pretreatment holds the potential to develop new processing strategies that could help to foster a more efficient and sustainable bio-based industry. </p>
|
2 |
[pt] ESTIMADOR INTELIGENTE DE BIOMASSA EM PASTOS USANDO ÍNDICES DE VEGETAÇÃO A PARTIR DE IMAGENS CAPTURADAS POR VANTS / [en] INTELLIGENT BIOMASS ESTIMATION IN PASTURES USING RGB-BASED VEGETATION INDICES FROM UAV IMAGERYLUCIANA DOS SANTOS NETTO DOS REYS 11 August 2022 (has links)
[pt] O gerenciamento correto das pastagens em regiões agropecuárias tem
papel fundamental na própria produção, na prevenção ao desperdício da
biomassa vegetal e a liberação de gases de efeito estufa (GEE). Além disso,
é necessário evitar o movimento inapropriado do rebanho entre pastos, pois
este é um processo demorado e pode ser estressante para o animal. O sucesso
desta gestão requer uma avaliação eficiente dos recursos da plantação. Os
estudos desenvolvidos com esta finalidade tem relação direta com a estimativa
da quantidade de biomassa em uma região específica da pastagem, pois, na
prática, ela não é realizada de forma precisa, devido à dificuldade de medição
em toda a área delimitada. Este trabalho tem como objetivo desenvolver
uma metodologia de estimativa de biomassa de baixo custo, baseada em
modelos de regressão que correlacionem os atributos de entrada mais relevantes
para a aplicação com o real peso da plantação, medido em g/m2
. Para os
atributos, foi medida a altura da grama forrageira e calculados os índices
de vegetação baseados em RGB a partir de imagens de veículos aéreos não
tripulados (VANTs). Como metodologia, utilizou-se regressões lineares, não
lineares, redes neurais artificiais baseados em perceptrons de múltiplas camadas
e a combinação de todos os modelos gerados (stacking ensemble). Foram
alcançados resultados satisfatórios utilizando modelos de redes neurais com
ainda duas camadas e com a metodologia de empilhamento de modelos,
alcançando um RMSE de 31.76 g/m2
, MAPE de 13.35 por cento e R
2 de 0.9. Portanto,
a metodologia proposta pode se tornar uma solução promissora e acessível para
a estimativa de biomassa vegetal para uma gestão eficiente e sustentável do
rebanho. / [en] The correct management of pastures in agricultural regions plays a
fundamental role in the production itself, in the prevention of plant biomass
waste and the release of greenhouse gases (GHG). In addition, it is necessary
to avoid inappropriate movement of the herd between pastures, as this is a
time-consuming process and can be stressful for the animal. The success of this
management requires an efficient assessment of the plant resources. The studies
developed for this purpose are directly related to the amount estimation of
biomass in a specific region of the pasture, because, in practice, it is not carried
out accurately, due to the difficulty of measurement throughout the field.
This work aims to develop a low-cost biomass estimation methodology, based
on regression models that correlate the most relevant input features for the
application with the actual density of the plantation, measured in g/m2
. For the
features, the height of the forage grass was measured and the vegetation indexes
based on RGB were calculated from images of unmanned aerial vehicles (UAV).
Linear, nonlinear regression (MNLR), artificial neural networks (ANN) based
on multi-layer perceptron (MLP) and the combination of all models generated
(stacking ensemble) were the methodologies tested in order to achieve the
best correlation. Satisfactory results were achieved using models of neural
networks with two layers and using stacking ensemble methodology, reaching a
RMSE of 31.76 g/m2
, MAPE of 13.35 percent and R-Squared of 0.9. Therefore, the
proposed methodology may become a promising and affordable solution for
plant biomass estimation toward efficient and sustainable herd management.
|
Page generated in 0.0618 seconds