• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 159
  • 45
  • 22
  • 20
  • 14
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 378
  • 378
  • 95
  • 82
  • 79
  • 67
  • 56
  • 55
  • 52
  • 49
  • 47
  • 43
  • 42
  • 39
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Simulation for Improvement of Dynamic Path Planning in Autonomous Search and Rescue Robots

Hasler, Michael Douglas January 2009 (has links)
To hasten the process of saving lives after disasters in urban areas, autonomous robots are being looked to for providing mapping, hazard identification and casualty location. These robots need to maximise time in the field without having to recharge and without reducing productivity. This project aims to improve autonomous robot navigation through allowing comparison of algorithms with various weightings, in conjunction with the ability to vary physical parameters of the robot and other factors such as error thresholds/limits. The lack of a priori terrain data in disaster sites, means that robots have to dynamically create a representation of the terrain from received sensor range-data in order to path plan. To reduce the resources used, the affect of input data on the terrain model is analysed such that some points may be culled. The issues of identifying hazards within these models are considered with respect to the effect on safe navigation. A modular open-source platform has been created which allows the automated running of experimental trials in conjunction with the implementation and use of other input types, node networks, or algorithms. Varying the terrains, obstacles, initial positions and goals, which a virtual robot is tasked with navigating means that the design, and hence performance, are not tailored to individual situations. Additionally, this demonstrates the variability of scenarios possible. This combination of features allows one to identify the effects of different design decisions, while the use of a game-like graphical interface allows users to readily view and comprehend the scenarios the robot encounters and the paths produced to traverse these environments. The initially planned focus of experimentation lay in testing different algorithms and various weightings, however this was expanded to include different implementations and factors of the input collection, terrain modelling and robot movement. Across a variety of terrain scenarios, the resultant paths and status upon trial completion were analysed and displayed to allow observations to be made. It was found that the path planning algorithms are of less import than initially believed, with other facets of the robotic system having equally significant roles in producing quality paths through a hazardous environment. For fixed view robots, like the choice used in this simulator, it was found that there were issues of incompatibility with A* based algorithms, as the algorithm’s expected knowledge of the areas in all directions regardless of present orientation, and hence they did not perform as they are intended. It is suggested that the behaviour of such algorithms be modified if they are to be used with fixed view systems, in order to gather sufficient data from the surroundings to operate correctly and find paths in difficult terrains. A simulation tool such as this, enables the process of design and testing to be completed with greater ease, and if one can restrain the number of parameters varied, then also with more haste. These benefits will make this simulation tool a valuable addition to the field of USAR research.
12

Dynamic modelling and control of a wheeled mobile robot

Albagul, Abdulgani January 2001 (has links)
No description available.
13

A generalised framework for the analysis of system architectures in automonomous robots

Couceiro Neves, Carlos January 1998 (has links)
No description available.
14

Path planning for redundant manipulators

McLean, Alistair William January 1995 (has links)
No description available.
15

Automatic Planning of Manipulator Transfer Movements

Lozano-Perez, Tomas 01 December 1980 (has links)
This paper deals with the class of problems that involve finding where to place or how to move a solid object in the presence of obstacles. The solution to this class of problems is essential to the automatic planning of manipulator transfer movements, i.e. the motions to grasp a part and place it at some destination. This paper presents algorithms for planning manipulator paths that avoid collisions with objects in the workspace and for choosing safe grasp points on objects. These algorithms allow planning transfer movements for Cartesian manipulators. The approach is based on a method of computing an explicit representation of the manipulator configurations that would bring about a collision.
16

Modeling dendritic shapes - using path planning

Xu, Ling 20 May 2008
Dendritic shapes are commonplace in the natural world such as trees, lichens, coral and lightning. Models of dendritic shapes are widely needed in many areas. Because of their branching fractal and erratic structures modeling dendritic shapes is a tricky task. Existing methods for modeling dendritic shapes are slow and complicated.<p>In this thesis we present a procedural algorithm of using path planning to model dendritic shapes. We generate a dendrite by finding the least-cost paths from multiple endpoints to a common generator and use the dendrite to build the geometric model. With the control handles of endpoint placement, fractal shape, edge weights distribution and path width, we create different shapes of dendrites that simulate different kinds of dendritic shapes very well. Compared with some existing methods, our algorithm is fast and simple.
17

Modeling dendritic shapes - using path planning

Xu, Ling 20 May 2008 (has links)
Dendritic shapes are commonplace in the natural world such as trees, lichens, coral and lightning. Models of dendritic shapes are widely needed in many areas. Because of their branching fractal and erratic structures modeling dendritic shapes is a tricky task. Existing methods for modeling dendritic shapes are slow and complicated.<p>In this thesis we present a procedural algorithm of using path planning to model dendritic shapes. We generate a dendrite by finding the least-cost paths from multiple endpoints to a common generator and use the dendrite to build the geometric model. With the control handles of endpoint placement, fractal shape, edge weights distribution and path width, we create different shapes of dendrites that simulate different kinds of dendritic shapes very well. Compared with some existing methods, our algorithm is fast and simple.
18

Solving multi-agent pathfinding problems in polynomial time using tree decompositions

Khorshid, Mokhtar Unknown Date
No description available.
19

A robotic approach to the analysis of obstacle avoidance in crane lift path planning

Lei, Zhen Unknown Date
No description available.
20

A robotic approach to the analysis of obstacle avoidance in crane lift path planning

Lei, Zhen 06 1900 (has links)
Crane lift path planning is time-consuming, prone to errors, and requires the practitioners to have exceptional visualization abilities, in particular, as the construction site is congested and dynamically changing. This research presents a methodology based on robotics motion planning to numerically solve the crane path planning problem. The proposed methodology integrates a database in order to automatically conduct 2D path planning for a crane lift operation, and accounts for the rotation of the lifted object during its movements. The proposed methodology has been implemented into a computer module, which provides a user-friendly interface to aid the practitioners to perform a collision-free path planning, and check the feasibility of the path at different stages of the project. Three examples are described in order to demonstrate the effectiveness of the proposed methodology and illustrate the essential features of the developed module. / Construction Engineering and Management

Page generated in 0.1106 seconds