Spelling suggestions: "subject:"[een] PDMS"" "subject:"[enn] PDMS""
61 |
Microcontact printing of antibodies in complex with conjugated polyelectrolytesvon Post, Fredrik January 2007 (has links)
Microcontact printing using elastomeric stamps is a technique used in finding new and efficient ways to produce biodetection chips. Microcontact printed, with poly(dimetylslioxane) (PDMS) stamps, patterns of antibodies have been evaluated using fluorescence microscopy, imaging ellipsometry and atomic force microscopy. Fluorescent conjugated polyelectrolytes form non-covalent molecular complexes with Immunoglobulin-γ type antibodies, antigen binding to the tagged antibody result in spectroscopic shifts. Four different conjugated polyelectrolytes (POWT, POMT, PTT, PTAA) in complex with human serum albumin antibodies (aHSA) have been tested with fluorescence spectroscopy. Complexes of POWT and aHSA gave rise to thelargest wavelength shift when exposed to human serum albumin. Several types of commercially available fluorescent antibodies and antigens were used to test the specificity of microcontact printed antibodies to different antigen solutions. Using fluorescence microscopy it could not be shown that printed antibody patterns promote specific adsorption of corresponding antigen. It is proposed however that changed surface characteristics of the substrate due to PDMS residues transferred during printing is the main driving force behind antigen adsorption. POMT - poly (3-[(s)-5-amino-5-methoxylcarboxyl-3-oxapentyl]-2,5-thiophenylenehydrochloride) POWT - poly (3-(s)-5-amino-5-carboxyl-3-oxapentyl]-2,5-thiophenylenehydrochloride) PTAA - polytiophene acetic acid PTT - poly (3-[2,5,8-trioxanonyl] thiophene)
|
62 |
HIGH SPEED CONTINUOUS THERMAL CURING MICROFABRICATION SYSTEMDiBartolomeo, Franklin 01 January 2011 (has links)
Rapid creation of devices with microscale features is a vital step in the commercialization of a wide variety of technologies, such as microfluidics, fuel cells and self-healing materials. The current standard for creating many of these microstructured devices utilizes the inexpensive, flexible material poly-dimethylsiloxane (PDMS) to replicate microstructured molds. This process is inexpensive and fast for small batches of devices, but lacks scalability and the ability to produce large surface-area materials. The novel fabrication process presented in this paper uses a cylindrical mold with microscale surface patterns to cure liquid PDMS prepolymer into continuous microstructured films. Results show that this process can create continuous sheets of micropatterned devices at a rate of 1.9 in2/sec (~1200 mm2/sec), almost an order of magnitude faster than soft lithography, while still retaining submicron patterning accuracy.
|
63 |
The selective removal of components from gasoline using membrane technologyRobinson, John January 2004 (has links)
Membrane technology is a potential method for upgrading gasoline quality, with respect to its tendency to promote fouling of engine inlet-systems. This thesis investigates the transport and separation mechanisms of dense polydimethylsiloxane (PDMS) membranes in nanofiltration applications relating to the filtration of gasoline fuels. Simulated fuels were created which comprised representative organic solvents with organometallic and poly-nuclear aromatic solutes. The flux and separation behaviour of the solvent-solute systems were studied using several apparatus and a range of operating regimes. Tests were performed with real fuels and refinery components to verify the mechanisms observed with the model solvent-solute systems, and several strategies were developed by which the process could be optimised or improved. Parallel to this work, a project was undertaken to assess the suitability of the technology on an industrial scale and to identify any scale-up issues. The key factors influencing flux were found to be the viscosity and swelling-effect of the solvent or solvent mixture. The dense membrane was shown to exhibit many characteristics of a porous structure when swollen with solvents, with the separation of low-polarity solutes governed principally by size-exclusion. It is postulated that swelling causes expansion of the polymer network such that convective and diffusive flow can take place between polymer chains. In general terms, a higher degree of swelling resulted in a higher flux and lower solute rejection. The separation potential of the membrane could be partly controlled by changing the swelling-effect of the solvent and the degree of membrane crosslinking. The transport of polar/non-polar solvent mixtures through PDMS was influenced by swelling equilibria, with separations occurring upon swelling the membrane. Separation of the more polar solvent occurred in this manner, and the solute rejection in multicomponent polar/non-polar mixtures deviated significantly from the behaviour in binary mixtures. The results obtained from a pilot-plant scale apparatus were largely consistent with those from laboratory-scale equipment, and engine tests showed that fuel filtration with PDMS is a technically-viable means of upgrading gasoline quality.
|
64 |
An Experimental Investigation of Capillary Driven Flow in Open Rectangular Channels: A Method to Create PDMS Microfilaments for pN Scale Force MeasurementsJanuary 2014 (has links)
abstract: The flow of liquid PDMS (10:1 v/v base to cross-linker ratio) in open, rectangular silicon micro channels, with and without a hexa-methyl-di-silazane (HMDS) or poly-tetra-fluoro-ethylene (PTFE) (120 nm) coat, was studied. Photolithographic patterning and etching of silicon wafers was used to create micro channels with a range of widths (5-50 μm) and depths (5-20 μm). The experimental PDMS flow rates were compared to an analytical model based on the work of Lucas and Washburn. The experimental flow rates closely matched the predicted flow rates for channels with an aspect ratio (width to depth), p, between one and two. Flow rates in channels with p less than one were higher than predicted whereas the opposite was true for channels with p greater than two. The divergence between the experimental and predicted flow rates steadily increased with increasing p. These findings are rationalized in terms of the effect of channel dimensions on the front and top meniscus morphology and the possible deviation from the no-slip condition at the channel walls at high shear rates.
In addition, a preliminary experimental setup for calibration tests on ultrasensitive PDMS cantilever beams is reported. One loading and unloading cycle is completed on a microcantilever PDMS beam (theoretical stiffness 0.5 pN/ µm). Beam deflections are actuated by adjusting the buoyancy force on the beam, which is submerged in water, by the addition of heat. The expected loading and unloading curve is produced, albeit with significant noise. The experimental results indicate that the beam stiffness is a factor of six larger than predicted theoretically. One probable explanation is that the beam geometry may change when it is removed from the channel after curing, making assumptions about the beam geometry used in the theoretical analysis inaccurate. This theory is bolstered by experimental data discussed in the report. Other sources of error which could partially contribute to the divergent results are discussed. Improvements to the experimental setup for future work are suggested. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2014
|
65 |
Coatings for the prevention of marine foulingOdolczyk, Katarzyna January 2016 (has links)
Microorganisms attachment to the surfaces located in the marine water has become a significant problem. Historically, the antifouling properties of the coatings were achieved by using biocides, which had a negative consequence to the marine environment. Currently, alternative environmental friendly methods are required. This thesis aimed to investigate and produce the antifouling coatings that can be used as potential candidates in the marine industry. In this study, a range of novel polymer nanocomposite coatings was fabricated via the method of solvent and tested based on the strategy of microbial adhesion. The composition of the coatings mainly contains polidimethylsiloxane (PDMS) and different nanomaterials. The coatings applied on glass substrate were characterised using X-ray spectroscopy (XRD), scanning electron microscopy (SEM), contact angle measurements, inductively coupled plasma mass spectroscopy (ICP-MS) and atomic force microscopy (AFM). In biofouling assays, attachment of bacteria B. Subtilis and three marine microalgae (Skeletonema sp., Amphora sp., D. Salina) was investigated in laboratory scale. The obtained results suggested that small amount of nanoparticles in the polymer matrix can improve the antifouling settlement behaviour of the coatings. All microalgae attached more on PDMS/SiO2 and control surfaces (glass and PDMS) compared to the coatings containing multiwall carbon nanotubes (MWCNT) and sodium bismuth titanate (NBT). The influence of contact time, surface roughness and surface wettability was also studied. The microbial attachment varied significantly with respect to contact time and surface properties. There was no obvious evidence showing that the wetting properties and the roughness of the coatings have an effect on growth ... [cont.].
|
66 |
Surface Characterization of an Organized Titanium Dioxide LayerJanuary 2013 (has links)
abstract: Soft lithographic printing techniques can be used to control the surface morphology of titanium dioxide layers on length scales of several hundred nanometers. Controlling surface morphology and volumetric organization of titanium dioxide electrodes can potentially be used in dye-sensitized solar cell devices. This thesis explores how layer-by-layer replication can lead to well defined, dimensionally controlled volumes and details how these control mechanisms influence surface characteristics of the semiconducting oxide. / Dissertation/Thesis / M.S.Tech Engineering 2013
|
67 |
Desenvolvimento de um sensor óptico para a determinação de hidrocarbonetos aromáticos em águas empregando a espectroscopia no infravermalho próximo (NIR)da Silva Albuquerque, Jackson January 2004 (has links)
Made available in DSpace on 2014-06-12T18:07:21Z (GMT). No. of bitstreams: 2
arquivo7931_1.pdf: 2300181 bytes, checksum: a2fb573ef8624f15cb0f20479cd54637 (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2004 / A contaminação de águas subterrâneas e superficiais com poluentes orgânicos,
como os hidrocarbonetos presentes nos derivados de petróleo, causa um perigo
potencial à saúde das populações, tornando-se necessário à avaliação contínua dos
níveis de concentração destas substâncias. Para isso, é importante o desenvolvimento de
técnicas analíticas de baixo custo para o monitoramento contínuo e remoto de águas de
drenagem contaminadas e para o controle de efluentes industriais. Os hidrocarbonetos
aromáticos, como o benzeno, o tolueno, o etilbenzeno e os xilenos (BTEX), são os
constituintes da gasolina mais solúveis em água e, assim, podem se difundir com
facilidade no lençol freático. A espectroscopia na região do Infravermelho Próximo
(NIR) vem sendo adotada em várias áreas, como na agricultura, nas indústrias
alimentícias, farmacêuticas, químicas e petroquímicas, por ser uma técnica simples,
rápida, não-destrutiva e de baixo custo. O objetivo deste trabalho foi o desenvolvimento
de um sensor óptico à base de uma fase sensora de silicona acoplada a um
espectrofotômetro NIR (Infravermelho Próximo) para a determinação de BTEX em
amostras aquosas. Inicialmente foram avaliados diferentes tipos de silicona com
características apropriadas para construção do sensor, como transparência e
plasticidade, tendo-se selecionado a silicona à base de Polidimetilsiloxano (PDMS). Um
estudo dinâmico foi efetuado para avaliação do tempo de resposta da sonda para cada
constituinte dos BTEX, adotando-se a resposta da sonda como sendo de um sistema de
primeira ordem. Com este estudo, comprovou-se que o sistema tem um comportamento
de primeira ordem, tornando válido o modelo proposto para a difusão de
hidrocarbonetos aromáticos em silicona à base de PDMS. Os tempos de resposta para o
benzeno, tolueno, etilbenzeno e m-xileno foram de 0,48 h, 1,34 h, 2,00 h e 1,97 h,
respectivamente. Realizando-se uma análise por componentes principais dos dados
espectrais obtidos para cada composto individualmente, misturas contendo BTEX e
amostras contaminadas por gasolina e diesel, verificou-se que é possível distinguir se
uma amostra aquosa tem um dos aromáticos em estudo e se a mesma foi contaminada
por gasolina ou óleo diesel. Diante disso, pode-se concluir que o sistema sensor-NIR
pode ser utilizado para determinação qualitativa de hidrocarbonetos aromáticos em
águas superficiais e subterrâneas
|
68 |
VisualSPEED:Uma Interface de Interação com o Usuário para PDMS Baseado em OntologiasALENCAR, Andrêza Leite de 01 March 2012 (has links)
Submitted by Pedro Henrique Rodrigues (pedro.henriquer@ufpe.br) on 2015-03-04T17:26:15Z
No. of bitstreams: 2
dissertacao_AndrezaLeite.pdf: 5802724 bytes, checksum: 846d419dec7f4fd531efa001c021ea9b (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-03-04T17:26:15Z (GMT). No. of bitstreams: 2
dissertacao_AndrezaLeite.pdf: 5802724 bytes, checksum: 846d419dec7f4fd531efa001c021ea9b (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Previous issue date: 2012-03-01 / A problemática da interação do usuário para a formulação e execução de consultas
vem sendo investigada para ambientes distribuídos e dinâmicos, tais como Peer Data
Management System (PDMS). Estes ambientes possuem características como o fato de
serem altamente dinâmicos em uma infraestrutura de pontos distribuídos, heterogêneos e
autônomos. Muitos destes PDMS baseados em semântica são compostos por pontos de
dados cujos esquemas exportados são representados por ontologias. Alguns destes PDMS
já propuseram interfaces para interação com o usuário, mas nenhuma das abordagens
atende, de forma geral, as necessidades de um PDMS no que diz respeito à interação com
o usuário.
Neste sentido, definimos uma interface visual para PDMS que proporciona ao usuário
uma interação simples e objetiva com este tipo de sistema. A VisualSPEED foi
desenvolvida e validada no ambiente de um PDMS baseado em ontologias chamado
SPEED (Semantic PEEr-to-Peer Data Management System). Esta interface apresenta
as ontologias graficamente e em hierarquia de conceitos, permitindo a formulação de
consultas por meio da manipulação desta visualização da ontologia, selecionando os
conceitos desejados para a consulta e combinando-os com operadores da Description
Logic (DL).Uma outra opção para submissão de consultas é o uso de templates SPARQL
(SPARQL Protocol and RDF Query Language), onde o usuário deve apenas inserir os
conceitos desejados para a consulta. Ainda para a execução de consultas, é possível
melhorar os resultados obtidos enriquecendo a consulta submetida, com o uso de variáveis
que representam relacionamentos entre os conceitos da consulta (aproximação,
subconceito, superconceito e agregação). Além da formulação e submissão de consultas,
a interface possibilita uma visualização organizada dos resultados com informações sobre
as correspondências semânticas que os geraram e os pontos de origem identificados em
uma topologia gráfica da rede.
A VisualSPEED foi especificada, seguindo técnicas de análise e prototipação, e
implementada. Para a avaliação da interface, foram realizados experimentos com dois
tipos de usuário (especialista e não especialista) e verificação de conformidade com os
critérios de usabilidade. Analisados os resultados obtidos das avaliações, concluímos que
a VisualSPEED é uma interface visual que apresenta as funcionalidades e transparência
necessárias para interação do usuário com um PDMS.
|
69 |
A study of membrane swelling and transport mechanisms in solvent resistant nanofiltrationCliff, Kevin Terry January 2011 (has links)
Recently a large amount of interest has developed around separating out impurities of small size; pertinent examples are found within fuel and solvent processing. For such applications a leading candidate process is nanofiltration. This thesis focuses on SRNF (solvent resistant nanofiltration) composite membranes consisting of a dense polymer active layer bonded to a stronger, but ultimately more porous, support layer. The composite membranes that have been produced during the course of this work consist of a PDMS (polymdimethylsiloxane) active layer bonded to a commercially available support layer of PAN (polyacrylonitrile). To create the membrane a monomer was spread over the support layer and then polymerised to form the matrix which was responsible for separation. Commercially, either heat or radiation is often applied to cause polymerisation, however the membranes in the current work have been formed by the used of a homogeneous catalyst. This thesis investigates the transport and separation dynamics of the produced membranes for a series of fuel simulants composed of organometallics and poly-nuclear aromatic solutes dissolved in aromatic and alkane solvents. Membrane composition and the extent of polymer swelling were found to be the two key factors which had the greatest influence on solvent flux and solute rejection. By increasing catalyst concentration it was found that the dual effects of increased rejection and reduced flux occurred, with the converse also being true. The effective pore size of the membrane could also be controlled by varying the catalyst amount during manufacture as this directly affected the limit of crosslinking which formed. Polymer swelling was the most pronounced using solvents with a solubility parameter close to that of the polymer. The membrane transport mechanism was most accurately forecast by the solution diffusion model for flux predictions and the convection diffusion model for rejection predictions, however all the models tried were in close agreement. This was postulated to be due to the swelled polymer matrix which allows for both convective and diffusive transport to occur.
|
70 |
Development of a cell cultureplatform in PDMS : Microfluidic systems for in vitro productionof plateletsNordh, Nicki January 2015 (has links)
To be able to effectively study blood platelets in different environments adevelopment of an in vitro model of a microfluidic system for plateletproduction was started. The purpose of this thesis was to fabricate systemsand then characterize them and visualize the flow. The system consists of twochannels, one in the middle and the other one enclosing it. They are connectedthrough pores where Megakaryocytes can protrude through and produce platelets.The designs were produced in PDMS. This was done by first transfer the designsas structures onto a silicon wafer through UV lithography. The wafer served asa mould for casting PDMS that later was bonded to glass. The systems were thenstudied with three different methods. Computer simulations, flow tests andultimately tests with cells. From the results new designs were made andfabricated. The new designs were then tested the same ways as the first ones.The systems can most probably produce platelets with some optimisation of thetest parameters. No definite results were gathered to prove plateletproduction. Different flow speeds were tested and the flow profile atdifferent flow rates was visualised. The full capability of the new designscould not be fully studied due to unforeseen debris of PDMS clogging thechannels. A few things need to be done to achieve better results and establishfor sure if this method of producing platelets is possible. This thesis is agood ground for future work to stand on.
|
Page generated in 0.0407 seconds