Spelling suggestions: "subject:"[een] PEMFC"" "subject:"[enn] PEMFC""
71 |
Design of a Robust PID Controller for Hydrogen Supply on a PEM Fuel CellHsueh, Chih-Hung 04 October 2011 (has links)
In this thesis we propose a robust PID controller to regulate the hydrogen flow of proton exchange membrane fuel cells. The controller allows the so-called hydrogen excess ratio to track a desired value rapidly in order to achieve saving hydrogen and to avoid damage of the fuel cell when the power output of
the fuel cell varies from one level to another.
The fuel cell system is governed by a set of complicated nonlinear dynamical equations. To ease the control design task, we model the system, at each operating point, as a feedback interconnection of
a linear time-invariant nominal part with a norm-bounded perturbation. We use the technique of system identification to acquire the transfer
function representation of the nominal part and the size of the perturbation. To do this, the chirp signal is adopted to excite the system and the observed response is analyzed using spectral analysis
to obtain the model. Based on the model, a $H_{infty}$ PID controller is designed for the fuel cell system. The design is tested on an experimental platform. The experimental results verify that the proposed
controller can regulate the hydrogen excess ratio rapidly under load variation, and effectively reject the influence of external disturbances.
|
72 |
Design, Fabrication and Electrochemical Impedance Spectroscopy for Microfuel CellsYang, Sheng-Hoang 14 July 2005 (has links)
The micro PEMFCs were designed and fabricated in-house through a deep UV lithography technique and the SU-8 photoresist was used as microstructure material for fuel cell flow-field plates. The effect of different operating parameters on micro PEMFCs performances and electrochemical impedances was experimentally investigated for three different flow-field configurations (interdigitated, mesh, and serpentine). Experiments with different cell operating temperatures, different backpressures on the H2 flow channels as well as various combinations of these parameters have been conducted for three different flow geometries. Results are presented in the form of the polarization VI curves, PI curves and impedance spectroscopy under different operating conditions. The possible transport mechanisms associated with the parametric effects were discussed. With PI and VI curve were found that, among the three flow patterns considered, significant improvements can be reached with a specified flow geometry. With impedance spectroscopy was found that, the effect of the parameters on high frequency straight line, medium frequency, and low frequency arc. The influence in terms of impedance on dynamic response of the present H2/air micro fuel cell under different operating conditions and flow geometry can be quantitatively measured.
|
73 |
Experimental Studies of the Effects of Flow Channel Structures and Inlets of Heterogeneous Composite Carbon Fiber Bipolar Plates on the PEMFC PerformanceChang, Yao-ting 10 September 2007 (has links)
The performance characteristics of pure hydrogen PEMFC (called HFC) stacks made with heterogeneous carbon fiber bipolar plates are studied in this thesis. In addition, the problem that the heterogeneous carbon fiber bipolar plate leaks in the high gas pressure is also solved in this studies so that the new plate can be used to the high current power sources. Because of the gas leakage of the first generation stack at high inlet gas pressure, the fuel supply is insufficient in the high current density.
A 4-cell PEMFC stack made with this new bipolar plate is built with weight 370 g and volume 385 cm3 without a fan. The total power out of the 4-cell stack is about 30 W at room temperature. The specific power and volumetric power densities are 81 mW/g and 78 mW/cm3, respectively. The average power density is about 160 mW/cm2, but the power density of a single-cell can reach a value about 220 mW/cm2. The insufficient fuel supply cause that the power density of 4-cell PEMFC stack is lower than single cell, so it is necessary to solve the gas leakage at high pressure.
Our experiment found that gas leakage occurs in heterogeneous bipolar plates can be relate to the insufficient or improper hot-pressing temperature, time and pressure while we are making the carbon fiber bunches. So the processes in making new carbon fiber bunches include water expansion, uniform glue adding, high hot-pressing pressure, and using proper temperature and enough solidification time. The airtight of the second generation of heterogeneous carbon fiber bipolar plates improves obviously with the new processes. No leakage occurs for gas pressure under 1atm. We expect that this design can be used to high inlet pressure. It is also quite suitable for various high-power electrical sources.
|
74 |
Micro Proton Exchange Membrane Fuel Cell Transient Current Distribution and Product Water MeasurementsHuang, Yi-Ji 11 July 2008 (has links)
In the study, the micro fuel cells were designed and fabricated in-house through a deep UV lithography technique, and a metal-organic chemical vapor deposition technique was used as microstructure material for fuel cell flow field plates. The conductive and insulating flow field plates include interdigitated, serpentine, parallel, and mesh. The experiments with several operation condition include of different cell operating temperatures, different reactant flow rates, and different operating times. This study of various operating parameters shows the physical phenomenon in the current density distribution in fuel cell reaction area and water accumulation in flow channel, and results are represented by VI curve and PI curve. The relationship of physics phenomenon between fuel cell¡¦s power production and water production rates from the current density distribution and water accumulation, can be found through visualization.
|
75 |
Continuous manufacturing of direct methanol fuel cell membrane electrode assembliesKoraishy, Babar Masood 21 December 2011 (has links)
Direct Methanol Fuel Cells (DMFC) provide an exciting alternative to current energy storage technologies for powering small portable electronic devices. For applications with sufficiently long durations of continuous operation, DMFC’s offer higher energy density, the ability to be refueled instead of recharged, and easier fuel handling and storage than devices that operate with hydrogen. At present, materials and manufacturing challenges impede performance and have prevented the entry of these devices to the marketplace. Higher-performing, cost-effective materials and efficient manufacturing processes are needed to enable the commercialization of DMFC.
In a DMFC, the methanol-rich fuel stream and the oxidant are isolated from one another by a proton-conducting and electrically insulating membrane. Catalysts in the electrodes on either side of the Membrane Electrode Assembly (MEA) promote the two simultaneous half-reactions which allow the chemical energy carried in the fuel and oxidant to be converted directly into electricity. The goal of this research effort is to develop a continuous manufacturing process for the fabrication of effective DMFC MEAs.
Based on the geometry of the electrode and materials used in the MEA, we propose a roll-to-roll process in which electrodes are coated onto a suitable substrate and subsequently assembled to form a MEA. Appropriate coating methods for electrode fabrication were identified by evaluating the requirements of continuous manufacturing processes; an appropriate set of these processes was then reduced to practice on a custom-designed flexible test bed designed explicitly for this project. After establishing baseline capabilities for several candidate methods, a spraying process was selected and a continuous manufacturing process concept was proposed. Finally, key control parameters of the spraying process were identified and their influence tested on actual MEAs to define optimal operating conditions. / text
|
76 |
Predictive Modeling of a PEMFC Cathode HumidifierProracki, Alexander January 2010 (has links)
The durability and performance of commercially available polymer electrolyte membrane fuel cell (PEMFC) technology depends heavily on adequate humidification of the membrane electrode assembly (MEA). Early generation automotive fuel cell stacks will likely rely on an external humidification process based on gas-to-gas membrane planar humidifiers to humidify the inlet cathode stream. The membrane-based humidifier systems allow the reactants to receive recycled heat and moisture from the cathode outlet stream.
The objective of this thesis is to develop a flexible, computer-based simulation tool that can be used to aid in the design of these planar humidifier systems. The simulation is based on fundamental mass transfer concepts and experimental membrane behaviour based on literature results. It was determined that the mass transfer resistance through the membrane is several orders of magnitude higher than the resistance contributed by the gas diffusion media (GDM) and thus the mass transfer resistance through the GDM are not considered. An important point to note is that the Schroeder’s Paradox observed in perfluorosulfonic acid (PFSA) membranes implies that membranes in contact with liquid water will exhibit higher mass transfer than membranes in contact with saturated water vapour despite the fact that the water activity in both situations are unity. Initial simulations for which no liquid water was present resulted in a humidifier water transfer rate less than half the rate observed experimentally. Thus it was hypothesized that condensed liquid water was present on the wet-side of the humidifier membrane and as such this work assumes a fraction of the membrane surface is covered by liquid water while the rest of the membrane is exposed to gaseous water concentrations comparable to the bulk channel stream above the GDM.
For typical operating conditions the outlet wet-side stream retains 92% of the inlet water content and as such it was hypothesized that constant fractional liquid water coverage across the membrane could be assumed. Later simulations confirmed the validity of this hypothesis. Six models of water coverage estimation were derived using least squares and factorial design methods. The models were compared however no single method was determined to be superior for all situations as the methods exhibit similar sums of squared error.
|
77 |
Experimental and Modelling Studies of Cold Start Processes in Proton Exchange Membrane Fuel CellsJiao, Kui January 2011 (has links)
Proton exchange membrane fuel cell (PEMFC) has been considered as one of the most promising energy conversion devices for the future in automotive applications. One of the major technical challenges for the commercialization of PEMFC is the effective start-up from subzero temperatures, often referred to as “cold start”. The major problem of PEMFC cold start is that the product water freezes when the temperature inside the PEMFC is lower than the freezing point. If the catalyst layer (CL) is fully occupied by ice before the cell temperature rises above the freezing point, the electrochemical reaction may stop due to the blockage of the reaction sites. However, only a few of the previous PEMFC studies paid attention to cold start. Hence, understanding the ice formation mechanisms and optimizing the design and operational strategies for PEMFC cold start are critically important.
In this research, an experimental setup for the cold start testing with simultaneous measurement of current and temperature distributions is designed and built; a one-dimensional (1D) analytical model for quick estimate of purging durations before the cold start processes is formulated; and a comprehensive three-dimensional (3D) PEMFC cold start model is developed. The unique feature of the cold start experiment is the inclusion of the simultaneous measurement of current and temperature distributions. Since most of the previous numerical models are limited to either 1D or two-dimensional (2D) or 3D but only considering a section of the entire cell due to computational requirement, the measured distribution data are critically important to better understand the PEMFC cold start characteristics. With a full set of conservation equations, the 3D model comprehensively accounts for the various transport phenomena during the cold start processes. The unique feature of this model is the inclusion of: (i) the water freezing in the membrane electrolyte and its effects on the membrane conductivity; (ii) the non-equilibrium mass transfer between the water in the ionomer and the water (vapour, liquid and ice) in the pore region of the CL; and (iii) both the water freezing and melting in the CL and gas diffusion layer (GDL). This model therefore provides the fundamental framework for the future top-down multi-dimensional multiphase modelling of PEMFC. The experimental and numerical results elaborate the ice formation mechanisms and other important transport phenomena during the PEMFC cold start processes. The effects of the various cell designs, operating conditions and external heating methods on the cold start performance are studied. Independent tests are carried out to identify and optimize the important design and operational parameters.
|
78 |
A NEW PEMFC FLOW FIELD PLATE OPTIMIZATION COMPARISON - ANSYS FLUENT FUEL-CELL SIMULATIONSoueidan, Ahmed Yassin 01 August 2012 (has links)
The performance of a new cathode flow field plate located on a PEM fuel cell was compared to an industry standard and optimal serpentine design provided from literature. Results were successfully collected through a fuel cell module integrated with the 3D computational fluid dynamics package ANSYS Fluent. Contour plots showing a cathode catalyst layer comparison of local current density, oxygen molar concentrations, water content, and the pressure inside of the flow channels were compared with both PEM fuel cell configurations. The new flow field plate/pattern was shown to distribute more mass species of oxygen, more evenly, to the reaction site given the same boundary conditions, thus contributing to more ideal local current density. The net-power was determined for both fuel cells which included the pump work-in and power-out from each fuel cell. The new flow field plate was shown, through computational power performance results, to outperform the conventional flow pattern by up to 2.4% when excluding the effects of pump work, and still upheld a positive gain when factoring in this value. With an additional 18 corners for improved water management due to the effects of wall adhesion, the new bipolar plate was proven to become a new competitor in PEM fuel cell technology. Furthermore, this thesis gives further insight on PEMFC digital prototyping.
|
79 |
Caractérisation et contrôle ultrasonore in situ de membranes échangeuses de protons / In situ ultrasonic characterization and control of proton exchange membranesFortineau, Julien 27 January 2017 (has links)
Les membranes Nafion©, composant essentiel des piles à combustibles (PEMFC), ont des performances liées à leur hydratation. En collaboration avec le CEA, nous avons développé une méthode de mesure de la vitesse ultrasonore et du gonflement de ce type de membranes par insertion-substitution. Conséquence de la faible épaisseur des échantillons devant la longueur d'onde, un phénomène de recouvrement apparait entre les différents échos d'aller-retour dans le matériau. Un algorithme de Matching Pursuit a été adapté au cas des membranes afin de déconvoluer les échos et ainsi de permettre la mesure de la vitesse de propagation ultrasonore et de l'atténuation. Nos mesures nous ont également permis de déterminer l'épaisseur de ces membranes. Une étude sur la robustesse et le domaine de validité de notre méthode de traitement est présentée. Ce manuscrit recense également l'ensemble des résultats sur la caractérisation des membranes Nafion dans différents états d'équilibre hydrique, attestant de la possibilité de caractériser la reprise hydrique de ce polymère par méthode ultrasonore. / No summary available
|
80 |
Corrosion of high surface area carbon supports used in proton-exchange membrane fuel cell electrodes / Corrosion des supports carbonés des électrocatalyseurs de pile à combustible basse températureCastanheira, Luis Filipe Rodrigues 14 November 2014 (has links)
Cette thèse est consacrée à l’étude des mécanismes de dégradation de noirs de carbone de forte surface spécifique (HSAC) utilisés comme supports d’électrocatalyseurs dans une pile à combustible à membrane échangeuse de protons (PEMFC). Nous avons montré que le mécanisme et les cinétiques de la corrosion électrochimique du carbone (COR) sont influencés par la présence d’ionomère Nafion®, la limite supérieure de potentiel électrochimique, la nature et le nombre de caractérisations intermédiaires présentes dans des tests de dégradation accélérés. En utilisant la spectroscopie Raman,il apparaît que la COR est sensible à la structure cristallographique des HSAC et procède plus rapidement sur les domaines désordonnés (carbone amorphe, cristallites de graphite présentant des défauts). Le taux de recouvrement en espèces oxygénées évalué par spectroscopie de photoélectrons X a été comparé à celui trouvé en intégrant l’intensité du pic quinone/hydroquinone (Q/HQ) envol tampérométrie cyclique. Finalement, une comparaison avec des matériaux carbonés ayant fonctionné pendant 12860 heures en PEMFC confirme nos principaux résultats et permet d’élaborer des stratégies pour atténuer les conséquences de la COR. / This thesis investigates the degradation mechanism of high surfacearea carbon (HSAC) supports used in proton-exchange membrane fuel cell (PEMFC) electrodes. The structural and the chemical properties of different HSAC supports were established. The effectof the Nafion® ionomer used as a proton conductor, the gas atmosphere, the upper potential limit and the intermediate electrochemical characterizations used to monitor the changes ofthe electrochemical surface area during accelerated stress tests(ASTs) were investigated. The long-term physical and chemical changes of Pt/HSAC electrocatalysts were investigated insimulated PEMFC operating conditions. Using Raman spectroscopy, we showed that the COR is strongly structure sensitive and proceeds more rapidly on disordered domains of the HSAC (amorphous carbon and defective graphite crystallites) thanon graphitic domains. The coverage with carbon surface oxides was investigated with X-ray photoelectron spectroscopy and bridged tothe intensity of the quinone/hydroquinone (Q/HQ) peak monitored by cyclic voltammetry. Finally, the analyses realized on membrane electrode assemblies operated for 12,860h disclosed a perfect agreement between model and real PEMFC operating conditions, and confirmed the structural dependency of the COR kinetics.
|
Page generated in 0.0404 seconds