Spelling suggestions: "subject:"[een] PEO"" "subject:"[enn] PEO""
1 |
Plasma electrolytic oxidation of titaniumAliasghari, Sepideh January 2014 (has links)
Plasma electrolytic oxidation is used to prepare corrosion- and wear-resistant coatings on light metals. The extensive literature reports on coatings formed under a wide range of different electrical regimes and in diverse electrolyte compositions. However, little work is available that investigates systematically PEO of titanium under a range of electrical variables in a particular electrolyte. In the present work, coatings are formed in a silicate electrolyte under a range of current densities, duty cycles and rates of positive to negative current density. The coatings were found to contain anatase, rutile and amorphous silicate-rich material, with comparatively minor influences of the PEO parameters. Further, coatings were limited in thickness to 40 μm due to a decrease in voltage and intensity of sparks at longer treatment times. The coatings were relatively soft with poor wear- and corrosion- resistances, and a high coefficient of friction although the last could be reduced by incorporation of PTFE particles into the coating. The study also investigates coatings formed in aluminate-phosphate based electrolytes, which generated wear-resistant and corrosion-resistant coatings of increased hardness. A focus was on the use of high-resolution electron microscopy, which has not been reported previously, to determine the details of the coating composition and structure. The findings revealed the distribution of coating species, showing an aluminum-rich outer layer and a titanium-rich inner layer, with phosphorus enriched in a band near the base of the coating. However, the coatings also revealed highly localized variations in composition within their noanocrystalline structures, due to the melting and rapid solidification of the coating material. The study also examined the role of electrolyte purity on the formation and properties of the coatings, which has not been examined elsewhere. Importantly chlorine species from the lower purity electrolyte were shown to enrich near the substrate, resulting in a cracked interfacial layer and reduced adhesion of the coating. Such observations may account for reports of poor coating adhesion in the literature. Further, a reduced purity of the electrolyte results in an erratic voltage response, due to cycles of mechanical breakdown and healing of the coating, with high levels of chloride resulting in a highly porous coating. The distributions of phosphorus and chlorine species within the coatings suggest that these species migrate inwards, with chlorine species migrating faster than phosphorus species.
|
2 |
Comportamento de fases de blendas de poli(L-lactídeo) e poli(óxido de etileno) / Phase behavior of blends based on poly(L-lactide) and poly(ethylene oxide)Rufino, Thiago do Carmo, 1988- 22 August 2018 (has links)
Orientador: Maria Isabel Felisberti / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-22T10:53:23Z (GMT). No. of bitstreams: 1
Rufino_ThiagodoCarmo_M.pdf: 62178066 bytes, checksum: c86de8ad8c099d3ea0fb76540c55b0de (MD5)
Previous issue date: 2013 / Resumo: Blendas de poli (L-Lactídeo) (PLLA) e poli(óxido de etileno) (PEO) têm sido amplamente estudadas devido às características destes polímeros tais como a biocompatibilidade e a biodegradabilidade e ao potencial de aplicação destas blendas nas áreas médica e farmacológica. Além disso, combinam um polímero hidrofóbico e quebradiço (PLLA) com um polímero hidrofílico/hidrossolúvel e flexível (PEO). A literatura apresenta estas blendas como sendo miscíveis na fase amorfa com base na depressão da temperatura de fusão dos componentes, porém não consideram possíveis efeitos morfológicos sobre a fusão e estes resultados são restritos a determinada faixa de massa molar. Neste contexto, este trabalho teve como objetivo avaliar se e como as propriedades térmicas e morfológicas de blendas PLLA/PEO são influenciadas pela composição e pela massa molar. Blendas com diferentes composições foram obtidas por criodessecação de soluções dos polímeros, com massas molares variando em ampla faixa, em benzeno. As blendas constituídas por PEO (Mw = 5,0 ¿¿ 163,0 kDa) e PLLA (Mw = 11,0 ¿¿ 199,0 kDa) mostraram-se imiscíveis na faixa de composição de 20 ¿¿ 80% de PEO. Blendas contendo 20% de PEO apresentaram comportamento de fusão e cristalização anômalo, atribuído a fatores de natureza cinética e morfológica. A cristalização fracionada do PEO nestas blendas sugere que o processo ocorreu sob confinamento. Para as demais composições a cristalização do PEO ocorreu sobre os esferulitos de PLLA, que atuou como um template para os cristalitos de PEO / Abstract: Blends of poly(l-lactic acid) (PLLA) and polyethylene oxide (PEO) have been studied by several authors, mainly due to the biocompatibility and biodegradability characteristics of these polymers, and to the potential application of their blends in medical and pharmacological areas. Besides, these blends combine a brittle and hydrophobic polymer (PLLA) with a exible and hydrophilic one (PEO). The current bibliography assumes the miscibility of these blends in the amorphous state based on the melting point depression. However, morphological e ects on the melting characteristics of the polymers are not considered and the results are restricted to a narrow molar mass range for both polymers. In this context, this work aims to evaluate if and how molar mass and compound ratio a ect the thermal properties and the morphology of these blends. The blends were prepared by freeze-drying of polymer solution in benzene. The results showed that the blends of PEO (Mw = 5 ¿¿ 163,0 kDa) and PLLA (Mw = 11,0 ¿¿ 199,0 kDa) are immiscible in the composition of 20 7! 80% of PEO. Blends containing 20% of PEO presented anomalous melting and fusion behavior as consequence of con ned fractioned crystallization, resulting in kinetic and morphological changes. The crystallization of PEO phase in blend during cooling from the melting state occured on the PLLA crystallites, which acted as template / Mestrado / Físico-Química / Mestre em Química
|
3 |
A study of poly(ethylene oxide) blends and copolymers in the presence of alkali metal saltsSchofield, Paula January 1995 (has links)
No description available.
|
4 |
Coarse-grained Simulations for Poly (ethylene oxide) Linear chains and [2]Catenanes in waterChen, Jiuke 03 May 2021 (has links)
No description available.
|
5 |
Tethered Polymer Chains on Single Crystal SurfacesVan Horn, Ryan M. 01 September 2009 (has links)
No description available.
|
6 |
Estudo da termodinamica de partição de polimeros hidrossoluveis em sistemas liquidos bifasicos aquosos/organicos / Thermodynamics of partitioning of hydrophilic polymers in aqueous organic biphasic systemsSassonia, Rogerio Corte 03 February 2004 (has links)
Orientador: Watson Loh / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Quimica / Made available in DSpace on 2018-08-04T21:50:11Z (GMT). No. of bitstreams: 1
Sassonia_RogerioCorte_M.pdf: 3284014 bytes, checksum: 197516cc0b2912a8d5f63b8f74a2073e (MD5)
Previous issue date: 2004 / Mestrado / Físico-Química / Mestre em Química
|
7 |
Montagem de equipamento, desenvolvimento, caracterização e aplicações médico-farmacológicas de nanofibras eletrofiadas à base de blendas de quitosana / Design and assembly of equipment, development, characterization and medical-pharmacological applications of electrospun nanofibers based on chitosan blendsBizarria, Maria Trindade Marques 20 August 2018 (has links)
Orientadores: Lucia Helena Innocentini Mei, Marcos Akira D'Ávila / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química / Made available in DSpace on 2018-08-20T02:05:21Z (GMT). No. of bitstreams: 1
Bizarria_MariaTrindadeMarques_D.pdf: 4483205 bytes, checksum: 44e9caae2b1e4e2bd5569681573ba911 (MD5)
Previous issue date: 2012 / Resumo: A obtenção de nanofibras de polímeros biocompatíveis, baseadas em quitosana, bem como a montagem de equipamento capaz de produzi-las, foi o principal objeto deste trabalho. Com este propósito, buscou-se de início reunir os dispositivos eletrônicos e mecânicos indispensáveis à prática da eletrofiação e um equipamento básico, de baixo custo, mas funcional foi construído. Com base na literatura, o ácido acético glacial a 90% em água deionizada foi o solvente utilizado para preparo das soluções de quitosana. Para viabilizar o processo da produção das nanofibras pela técnica da eletrofiação utilizaram-se blendas de soluções de quitosana com soluções de outros polímeros biocompatíveis em vez de soluções de quitosana pura. Assim, blendas de soluções de quitosana com soluções aquosas do poli(óxido de etileno) - PEO , bem como, com soluções aquosas de Poli(álcool vinílico) - PVA, em diversas proporções, foram eletrofiadas. O Poli(óxido de etileno) mostrou superior desempenho, como auxiliar na fiação da quitosana, permitindo a obtenção de fibras com até 80% de quitosana, e com diâmetros inferiores àqueles obtidos com as blendas de soluções de quitosana/PVA. A adição de um eletrólito (NaCl) às soluções blendas de quitosana/PEO proporcionou um processo fácil ininterrupto, sendo assim, buscou-se um melhor entendimento sobre as propriedades das soluções da quitosana e do PEO que norteiam comportamentos mais ou menos favoráveis ao processo da eletrofiação, caracterizando-se essas soluções através de estudos de viscosidade, de medidas de tensão superficial e de condutividade elétrica. A morfologia das fibras obtidas foi caracterizada por microscopia eletrônica de varredura (MEV) e, as propriedades térmicas, das membranas nanoestruturadas resultantes da eletrofiação das soluções de Quitosana/PEO, foram avaliadas por análise termogravimétrica (TGA) e calorimetria diferencial exploratória (DSC). A biocompatibilidade das membranas com teor de quitosana mais elevado (80% quitosana/20% PEO) foi avaliada através de testes de citotoxicidade in vitro, biocompatibilidade in vivo e adesão e crescimento celular in vitro. Adicionalmente, foram conduzidos experimentos visando avaliar o desempenho destas mesmas membranas como carreadoras de fármacos sendo que, a incorporação de nanopartículas de prata (AgNPs), bem como de digluconato de clorexidina apresentaram resultados promissores / Abstract: The development of biocompatible polymer nanofibers based on chitosan and the design and assembly of equipment capable of producing them were the main objectives of this work. For this purpose, the basic electronic and mechanical devices were obtained and a low-cost functional electrospinning setup was built. Based on the literature, glacial acetic acid with concentration of 90% in deionized water was the solvent used to prepare the chitosan solutions. In order to enable the nanofiber production by electrospinning, blends of chitosan solutions with other biocompatible polymers were used instead of pure chitosan solutions. Thus, blends of chitosan solutions with aqueous solutions of poly (ethylene oxide) PEO as well as with aqueous solutions of poly (vinyl alcohol) PVA, in various proportions, were electrospun. The PEO presented superior performance as an aid to obtain chitosan fibers, resulting in fibers with up to 80% of chitosan, and with smaller diameters than those obtained with solutions of blends of chitosan / PVA. The addition of an electrolyte (NaCl) to the chitosan/PEO solution blends has provided an easy and uninterrupted process. Thus, to obtain a better understanding about the properties of chitosan and PEO solutions that lead to more or less favorable behaviors to the electrospinning process, these solutions were characterized by performing viscosity studies and measurements of surface tension and electrical conductivity. The morphology of the fibers was evaluated by scanning electron microscopy (SEM) and the thermal properties of nanostructured membranes resulting from electrospinning of chitosan/PEO solutions were evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC).The biocompatibility of the higher-content-chitosan membranes (80%chitosan /20% PEO) was evaluated by tests of in vitro cytotoxicity, in vivo biocompatibility and in vitro cell adhesion and growth. In addition, experiments were conducted to evaluate the performance of the same membrane as a carrier of drugs. In this way, the incorporation of silver nanoparticles (AgNPs) and chlorhexidine digluconate showed promising results / Doutorado / Ciencia e Tecnologia de Materiais / Doutor em Engenharia Química
|
8 |
Nanofibras de poli(ε-caprolactona) e poli(óxido de etileno): fabricação pela técnica de eletrofiação e efeitos radiolíticosGONÇALVES, Gonçalves 28 August 2015 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2016-04-19T11:42:18Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Dissertação Natércia Antunes Gonçalves.pdf: 4208190 bytes, checksum: b60c1953389fb9ccc50987db955906d5 (MD5) / Made available in DSpace on 2016-04-19T11:42:19Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Dissertação Natércia Antunes Gonçalves.pdf: 4208190 bytes, checksum: b60c1953389fb9ccc50987db955906d5 (MD5)
Previous issue date: 2015-08-28 / FACEPE / O poli(ε-caprolactona) (PCL) é um poliéster biocompatível, biodegradável e
semicristalino utilizado na confecção de artefatos médico-farmacêuticos, especialmente
como suporte para cultivo de células e tecidos. Por outro lado, sua hidrofobicidade e
baixas taxas de hidrólise in vivo impedem a expansão do uso destes polímeros em
aplicações biológicas. Nesta pesquisa, empregamos três estratégias na tentativa de
aumentar a taxa de hidrólise da PCL: a) preparação do material em morfologia fibrilar,
para aumentar a superfície de contato com o meio; b) irradiação com raios gama, para
induzir dano molecular e acelerar a hidrólise; e c) blenda com o polímero hidrofílico e
lixiviável poli(óxido de etileno) (PEO), para aumentar a molhabilidade e permitir maior
percolação da água. Tapetes de PCL, apresentando nanofibras com diâmetros menores
que 100nm e de microfibras com diâmetros entre 1,9 e 7,5μm da blenda PCL/PEO 10%
m/m foram preparados pela técnica de eletrofiação, irradiados com raios gama em doses
de 25 e 50kGy e submetidos à hidrólise por submersão em tampão fosfato salino (PBS)
pH 7,4 a 37 0C. Para comparação, filmes de PCL e da blenda de PCL/PEO foram
confeccionados por derrame em solução (film casting) e submetidos ao mesmo
tratamento. Nada se pode afirmar sobre as mudanças de Massa Molar Viscosimétrica
Média (Mv) em filmes de PCL irradiados, pois não foi possível observar nem o efeito
de cisão, nem reticulação da cadeia principal. A irradiação gama não influenciou nas
propriedades térmicas dos filmes de PCL e os cálculos de energia de ativação para
reações de decomposição térmica evidenciaram que filmes de PCL têm boa estabilidade
térmica. Ensaios espectrométricos no Infravermelho com Transformada de Fourier
(FTIR) e difratométricos de raios X dos filmes de PCL não foi possível observar
mudanças significativas de estrutura molecular ou cristalinidade com a irradiação gama.
As estratégias adotadas para melhorar a degradação hidrolítica do PCL funcionaram.
Blendas de PCL/PEO (10% m/m) apresentaram taxa de degradação hidrolítica maiores
do que as amostras de PCL, tanto na forma de tapetes microfibrilares eletrofiados como
na forma de filmes espessos. Sendo a primeira com taxa de degradação mais acentuada.
A irradiação gama exerce influência significativa na degradação hidrolítica apenas em
blendas PCL/PEO na forma de filmes. A degradação hidrolítica dos filmes de PCL se
mostrou muito lenta, não sendo possível observar diferenças significativas entre
amostras irradiadas e não irradiadas. / Poly (ε-caprolactone) (PCL) is a biocompatible, biodegradable, semicrystalline
polyester used in medical-pharmaceutical devices, specially as scaffolds in cell and
tissue culture. Nevertheless, its hydrophobicity and low in vivo hydrolysis rates are
obstacles to the expansion of its use in biological applications. In this work, we
designed three strategies to address PCL hydrophobicity issues: a)prepare electrospun
fibers to enhace contact surface with aqueous media; b)irradiation with gamma rays to
induce molecular damage and increase hydrolysis rate; and c) blending with the
hydrophilic, leacheble polymer poly(ethylene oxide) (PEO), in order to increase
wettability and allow larger water percolation rates. Mats of PCL electrospun nanofiber
with less than 100nm in diameter; and of electrospun PCL/PEO (10%wt) blend
microfibers presenting diameters in the range of 1.9 - 7.5 μm were irradiated with
gamma rays in 25 and 50 kGy dose and submitted to in vitro hydrolysis in phosphatebuffered
saline (PBS) solution, pH 7,4 at 37 0C. PCL and PCL/PEO (10%wt) films were
also prepared by film casting and treated in the same way, for comparison. Nothing can
be said about mass changes Viscosity Average Molar Mass (Mv) in irradiated PCL
films because it was not possible to observe nor the effect of spin-off, or crosslinking of
the backbone. Good thermal stability was also evidenced by calculations of activation
energy for thermal degradation of PCL. Fourier Transform Infrared espectrometry and
X-ray difractometry data did not evidence significant changes in molecular structure or
crystallitiny of PCL after irradiation.
Strategies to improve PCL in vitro hydrolysis degradation rate were successful. Blends
of PCL/PEO (10% wt) presented higher hydrolysis rates than PCL samples, either in
mat fibers or film forms. Hydrolysis degradation of PCL films was very slow, and no
differences between non irradiated or irradiated samples were observed.
|
9 |
Poly(Ethylene Oxide) Based Bottle-Brush Polymers and their Interaction with the Anionic Surfactant Sodium Dodecyl Sulphate : Solution and Interfacial PropertiesIruthayaraj, Joseph January 2008 (has links)
The aim of this thesis work is to study the physico-chemical properties of poly(ethylene oxide), PEO, based brush polymers both in solution and at solid/aqueous interfaces. The importance of studying the surface properties of brush polymers can be related to a broad spectrum of interfacial-related applications such as colloidal stability, lubrication, detergency, protein repellency to name a few. In many applications it is desirable to form brush-like structures through simple physisorption. In this context the surface properties of PEO based brush polymers differing in molecular architecture were studied, using ellipsometry and surface force apparatus (SFA), to gain some understanding regarding the effect of molecular architecture on the formation of brush structures. The molecular architecture was varied by varying the charge/PEO ratio along the backbone. This study demonstrates that the formation of a brush structure at solid/aqueous interface is due to interplay between the attraction of the backbone to the surface and the repulsions between the PEO side chains. An optimal balance between the two antagonistic factors is required if one aims to build a well-defined brush structure at the interface. In this study the brush-like structures are formed when 25-50% of the backbone segments carry poly(ethylene oxide) side chains. Scattering techniques such as light and neutron reveal that these brush polymers are stiff-rods up to a charge to PEO ratio of 75:25. These stiff PEO brush polymer easily replace the more flexible linear PEO at the silica/water interface, the reason being that the entropy loss on adsorption is smaller for the brush polymer due to its stiff nature. Polymer-surfactant systems play a ubiquitous role in many technical formulations. It is well known that linear PEO, which adopts random coil conformation in aqueous solution, interact strongly with the anionic surfactant, Sodium Dodecyl Sulphate (SDS). It is of interest to study the interaction between SDS and brush PEO owing to the fact that the PEO side chains have limited flexibility as compared to the linear PEO. The interaction between brush PEO and the anionic surfactant SDS in solution are studied using different techniques such as NMR, tensiometry, SANS and light scattering. The main finding of this study is that the interaction is weaker compared to the linear PEO-SDS interactions which poses an interesting question regarding the role of chain flexibility in polymer-surfactant interactions. / QC 20100813
|
10 |
Enhancing Protein-Resistance of PEO-Modified BiomaterialsMurthy, Ranjini 16 January 2010 (has links)
The ultimate goal of this dissertation research is to enhance the protein resistant
nature of poly(ethylene oxide) (PEO) or poly(ethylene glycol) by introduction of a
siloxane linker and to subsequently prepare coatings which prevent surface-induced
thrombosis. The hydrophobicity and flexibility of the siloxane tether should impart both
amphiphilicity and conformational mobility to the PEO chain to further decrease protein
adhesion. Because adsorption of plasma (blood) proteins initiates the clotting process,
coating surfaces based on these new PEO-silanes should prevent or significantly
diminish thrombosis. Thus, these coatings would be extremely useful for bloodcontacting
medical devices such as stents, grafts, arteriorintravenous shunts, and
biosensors.
Novel amphiphilic PEO-silanes were prepared with systematic variations to
several key structural features, including: siloxane tether length, PEO segment length,
and PEO architecture. Thus, PEO-silanes were prepared having the general formulas:
a-(EtO)3Si(CH2)2-oligodimethylsiloxanen-block-[PEO8-OCH3] (n = 0, 4, and 13; linear
architecture) and a-(EtO)3Si(CH2)2-oligodimethylsiloxanen-block-[PEOm-OCH3]2 (n = 0, 4, and 13; m = 6 and 12 branched architecture). The reactive triethoxysilane [(EtO)3Si-]
group serves as the crosslinking or grafting moiety. The PEO segment is distanced from
the (EtO)3Si- group by an oligodimethylsiloxane tether which is both hydrophobic and
exhibits a high degree of chain flexibility. Crosslinked silicone coatings and surfacegrafted
coatings were prepared with amphiphilic linear PEO-silanes (a-c). Crosslinked
silicone coatings were also prepared with branched PEO-silanes (1a-3a and 1b-3b). All
coatings showed improved resistance to common plasma proteins compared to silicone
coatings. Furthermore, protein adsorption generally decreased with siloxane tether
length.
For crosslinked PEO-modified silicone coating systems based on linear (a-c) and
branched PEO-silanes (1a-3a and 1b-3b), longer tethers enhanced PEO reorganization
to the film-water interface to enhance protein resistance. In the absence of surface
reorganization for surface grafted coatings prepared with linear PEO-silanes, longer
siloxane tethers better inhibited protein adsorption despite a moderate decrease in graft
density (sigma) and decrease in surface hydrophilicity. This indicates that longer siloxane
tethers enhance the configurational mobility of the PEO segments to better repel
proteins.
|
Page generated in 0.0275 seconds