• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 143
  • 60
  • 38
  • 30
  • 14
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 370
  • 370
  • 121
  • 121
  • 108
  • 92
  • 90
  • 90
  • 79
  • 77
  • 59
  • 51
  • 36
  • 35
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Microscale observables for heat and mass transport in sub-micron scale evaporating thin film

Wee, Sang-Kwon 30 September 2004 (has links)
A mathematical model is developed to describe the micro/nano-scale fluid flow and heat/mass transfer phenomena in an evaporating extended meniscus, focusing on the transition film region under nonisothermal interfacial conditions. The model incorporates thermocapillary stresses at the liquid-vapor interface, a slip boundary condition on the solid wall, polarity contributions to the working fluid field, and binary mixture evaporation. The analytical results show that the adsorbed film thickness and the thin film length decrease with increasing superheat by the thermocapillary stresses, which influences detrimentally the evaporation process by degrading the wettability of the evaporating liquid film. In contrast, the slip effect and the binary mixture enhance the stability of thin film evaporation. The slip effect at the wall makes the liquid in the transition region flow with smaller flow resistance and thus the length of the transition region increases. In addition, the total evaporative heat flow rate increases due to the slip boundary condition. The mixture of pentane and decane increases the length of the thin film by counteracting the thermocapillary stress, which enhances the stability of the thin film evaporation. The polarity effect of water significantly elongates the thin film length due to the strong adhesion force of intermolecular interaction. The strong interaction force restrains the liquid from evaporation for a polar liquid compared to a non-polar liquid. In the experimental part, laser induced fluorescence (LIF) thermometry has been used to measure the microscale temperature field of a heated capillary tube with a 1 mm by 1 mm square cross section. For the temperature measurement, the calibration curve between the temperature and the fluorescent intensity ratio of Rhodamine-B and Rhodamine-110 has been successfully obtained. The fluorescent intensity ratio provides microscale spatial resolution and good temperature dependency without any possible bias error caused by illuminating light and background noise usually encountered in conventional LIF techniques. For the validation of the calibration curve obtained, thermally stratified fields established inside a glass cuvette of 10 mm width were measured. The measurement result showed a good agreement with the linear prediction. The temperature measurement in a 1 mm capillary tube could provide the feasible method of temperature measurement for the thin film region in the future.
12

A Thermal Switch from Thermoresponsive Polymer Aqueous Solutions

Ma, Yunwei 29 November 2018 (has links)
Thermal switch is very important in today’s world and it has varies of applications including heat dissipation and engine efficiency improving. The commercial thermal switch based on mechanical design is very slow and the structure is too complicated to make them smaller. To enable fast thermal switch as well as to make thermal switch more compact, I try to use second-order phase transition material to enable our thermal switch. Noticing the transition properties of thermoresponsive polymer for drug delivery, its potential in thermal switch can be expected. I used Poly(N-isopropylacrylamide) (PNIPAM) as an example to show the abrupt thermal conductivity change of thermoresponsive polymer solutions below and above their phase transition temperature. A novel technique, transition grating method, is used to measure the thermal conductivity. The ratio of thermal switch up to 1.15 in transparent PNIPAM solutions after the transition is observed. This work will demonstrate the new design of using second-order phase transition material to enable fast and efficient thermal switch. / Master of Science / Controllable thermal conductivity (thermal switching) is very important to thermal management area and useful in a wide area of applications. Nowadays, mechanical thermal conductivity controller device suffers from large scale and slow transition speeds. To solve these problems, I tired the phase transition thermoresponsive polymers to create quick thermal switching because the thermal conductivity will change with the phase. Thermoresponsive polymers show sharp phase changes upon small changes in temperature. Such polymers are already widely used in biomedical-like applications, the thermal switch applications are not well-studied. In this work, I tested Poly(N-isopropylacrylamide) (the abbreviation is PNIPAM) as an example to show the quick thermal conductivity changing ability of thermoresponsive polymer when the transition was happened .I used a novel approach, called the TTG, transient thermal grating. It has easy setup and high sensitivity. The thermal conductivity switching ratio as high as 1.15 in transparent PNIPAM solutions after transition is observed. This work will give new opportunities to control thermal switches using the phase change of thermoresponsive material or abrupt other phase change material in general.
13

On the convergence of the heat balance integral method

Mosally, F., Wood, Alastair S., Al-Fhaid, A. 28 July 2009 (has links)
No / Convergence properties are established for the piecewise linear heat balance integral solution of a benchmark moving boundary problem, thus generalising earlier results [Numer. Heat Transfer 8 (1985) 373]. A convergence rate of O(n¿1) is identified with minor effects at large values of the Stefan number ß (slow interface movement). The correct O(n¿1/2) behaviour for incident heat flux is recovered for ß ¿ 0 (pure heat conduction) as previously found [Numer. Heat Transfer 8 (1985) 373¿382]. Numerical illustrations support the theoretical findings.
14

ELECTROHYDRODYNAMIC INVESTIGATION DURING MELTING OF PHASE CHANGE MATERIALS IN A CONDUCTION DOMINATED MELTING REGIME

Hassan, Ahmed January 2024 (has links)
This thesis makes a novel contribution to the state-of-the-art literature on EHD melting enhancement of PCMs showing the effects of electroconvection flow and solid extraction during the melting process. The details of the contribution made by this work have been disseminated in the form of three journal publications, which have been integrated into this sandwich Ph.D. thesis. / Latent heat thermal energy storage plays an important role in bridging the gap between the energy supply and consumer demands. The latent heat storage systems use phase change materials (PCMs) which are characterized by their high latent heat and therefore lead to higher energy densities. However, one major disadvantage of PCMs is their low thermal conductivities which affects the rates of charging and discharging. Electrohydrodynamics (EHD) offers an opportunity as an active heat transfer enhancement method which can significantly enhance the melting rates while being able to control the heat transfer as per the system’ needs with a very low power consumption. The application of EHD in two-phase solid liquid systems results in generating electroconvection flow in the liquid medium which increases the heat transfer coefficient and decreases the melting time. The main objective of the current work is to study the heat transfer enhancement and the role of EHD forces during the melting of phase change materials (PCMs) under constant temperature boundary conditions. There are two main investigations performed in the current study. First is experimentally studying the EHD melting enhancement of PCMs while applying high voltages through two rows of electrodes embedded inside the PCM. Moreover, in the experiments, solid extraction was investigated using high-speed imaging conducted at various locations with respect to the electrodes. In the second investigation, PCM melting in a rectangular cavity under the effect of EHD and constant temperature boundary conditions is studied numerically. The flow field, temperature field, and phase field are simulated during the melting process until a steady state condition is reached. Additionally, the effect of the applied voltage and temperature boundaries on the electroconvection flow is illustrated. Experimentally, the EHD melting enhancement of paraffin wax is examined under different applied DC voltage magnitudes and polarities, and different temperature gradients. In addition, the role of EHD forces was investigated by applying DC and AC square waves with different frequencies and offset values. The results showed that the melting enhancement increases with a nonlinear relation with voltages, wherein the maximum effective thermal conductivity was found to be 0.95 W/m-K at -10 kV in comparison with the value of 0.2 W/m-K for the pure liquid paraffin wax, with an enhancement ratio of 4.75. The Coulomb force was concluded to be the dominant EHD force in the study while the dielectrophoretic effect was negligible. Characterization of solid extraction was performed by measuring the intensity of extraction, and the size and velocity of dendrites after extraction at different applied voltages and temperature boundaries for different phase change materials having different mushy zone thickness. For paraffin wax, solid extraction was detected for all the applied DC voltages. Small dendrites were observed to be pulled out from the mushy zone melt front and rise upwards in a rotational manner. The extraction intensity was found to be high at locations of high Coulomb force near the electrodes. In addition, solid extraction measurements showed that the size and velocity of the extracted dendrites increase alongside the applied voltage while the velocity decreases at higher temperature boundaries. Finally, it was found that the existence of a large mushy zone results in higher solid extraction intensities. A numerical model was conducted using the finite element method to investigate the EHD melting of PCMs. In the model, the non-autonomous charge injection assumption is used with the Coulomb force being the only electrical body force considered. First, phase-change modeling is conducted to simulate the melting of paraffin wax without EHD under constant temperature boundary conditions until a steady-state condition is achieved. Next, the whole set of coupled EHD equations is introduced to the model to simulate the EHD melting process. The results revealed that two electroconvection cells were generated between each two successive electrodes in the liquid PCM. The EHD flow leads to the redistribution of the temperature field which enhances the heat transfer. EHD melting continues until a steady-state condition is regained after one hour of EHD time, at which point the enhancement ratio was found to be 2.33 at 6 kV. The influence of the applied voltages and temperature boundaries on the electroconvection flow showed that the fluid velocity increases significantly by increasing the voltage while it decreases under higher temperature gradients across the liquid region. This thesis makes a novel contribution to the state-of-the-art literature on EHD melting enhancement of PCMs showing the effects of electroconvection flow and solid extraction during the melting process. The details of the contribution made by this work have been disseminated in the form of three journal publications, which have been integrated into this sandwich Ph.D. thesis. / Thesis / Doctor of Philosophy (PhD)
15

Electrohydrodynamic Solidification of Phase Change Materials

Thompson, Eric January 2017 (has links)
In this investigation an electric field was applied to a phase change thermal storage system while it was discharging energy. The phase change material used was octadecane. Octadecane is a high purity dielectric material that has a melting temperature close to room temperature. The material was forced to solidify using a heat exchanger mount below the phase change material, cold water flowed through the heat exchanger to ensure it maintained a constant temperature below the melting temperature of the phase change material. By applying -8kV to 9 electrodes – positioned in the phase change material – and by using the heat exchanger as an electrical ground – an electric field was generated in the phase change material. The electric field caused unbalanced body forces in the fluid which generated electro-convection in the fluid. The system was designed such that electro-convection is the only source of convection in the system to isolate the effects of electro-convection, allowing for the underlying physics of electro-convection to be studied easier. To understand the effects of applying electro-convection, a case where there is no applied voltage on the electrodes was compared to a case where there was -8 kV applied to the electrodes. Experiments showed that the effect of applying electro-convection depends on the initial temperature; however, it was found that the improvement after two hours was less than 10%. For a wall temperature of 8.5℃ and an initial temperature of 50℃ - the melting temperate of octadecane is 28℃- then the maximum enhancement of the energy extracted is 50%, but two hours after the start of the test the enhancement approached zero. For a wall temperature of 8.5℃ and an initial temperature of 30℃, the maximum enhancement is 10% and similarly fall to zero after a few hours of application. A simple analytical model was developed. The experimental and numerical results showed that at the early stages of energy discharge the electro-convection case had a large improvement compared to a pure conduction case, however as time progresses this improvement decreases. The explanation for the trend is that adding convection only increases the rate that energy is taken out of the liquid, thus the maximum improvement is bounded by the amount of sensible energy in the liquid phase change material, once this sensible energy is removed applying electrohydrodynamics is no longer beneficial. / Thesis / Master of Applied Science (MASc)
16

Phase change thermal enery storage for the thermal control of large thermally lightweight indoor spaces

Gowreesunker, Baboo Lesh Singh January 2013 (has links)
Energy storage using Phase Change Materials (PCMs) offers the advantage of higher heat capacity at specific temperature ranges, compared to single phase storage. Incorporating PCMs in lightweight buildings can therefore improve the thermal mass, and reduce indoor temperature fluctuations and energy demand. Large atrium buildings, such as Airport terminal spaces, are typically thermally lightweight structures, with large open indoor spaces, large glazed envelopes, high ceilings and non-uniform internal heat gains. The Heating, Ventilation and Air-Conditioning (HVAC) systems constitute a major portion of the overall energy demand of such buildings. This study presented a case study of the energy saving potential of three different PCM systems (PCM floor tiles, PCM glazed envelope and a retrofitted PCM-HX system) in an airport terminal space. A quasi-dynamic coupled TRNSYS®-FLUENT® simulation approach was used to evaluate the energy performance of each PCM system in the space. FLUENT® simulated the indoor air-flow and PCM, whilst TRNSYS® simulated the HVAC system. Two novel PCM models were developed in FLUENT® as part of this study. The first model improved the phase change conduction model by accounting for hysteresis and non-linear enthalpy-temperature relationships, and was developed using data from Differential Scanning Calorimetry tests. This model was validated with data obtained in a custom-built test cell with different ambient and internal conditions. The second model analysed the impact of radiation on the phase change behaviour. It was developed using data from spectrophotometry tests, and was validated with data from a custom-built PCM-glazed unit. These developed phase change models were found to improve the prediction errors with respect to conventional models, and together with the enthalpy-porosity model, they were used to simulate the performance of the PCM systems in the airport terminal for different operating conditions. This study generally portrayed the benefits and flexibility of using the coupled simulation approach in evaluating the building performance with PCMs, and showed that employing PCMs in large, open and thermally lightweight spaces can be beneficial, depending on the configuration and mode of operation of the PCM system. The simulation results showed that the relative energy performance of the PCM systems relies mainly on the type and control of the system, the night recharge strategy, the latent heat capacity of the system, and the internal heat gain schedules. Semi-active systems provide more control flexibility and better energy performance than passive systems, and for the case of the airport terminal, the annual energy demands can be reduced when night ventilation of the PCM systems is not employed. The semi-active PCM-HX-8mm configuration without night ventilation, produced the highest annual energy and CO2 emissions savings of 38% and 23%, respectively, relative to a displacement conditioning (DC) system without PCM systems.
17

Phase-change materials for photonic memories and optoelectronic applications

Ocampo, Carlos Andrés Ríos January 2016 (has links)
The content of this thesis encompasses the fundamentals, modelling, chip design, nanofabrication process, measurement setup, and experimental results of devices exploiting the optical properties of phase-change chalcogenide materials. Special attention is paid to integrated Si<sub>3</sub>N<sub>4</sub> nanophotonic circuits for optical switching and memory applications, as well as to multilayer stacks for colour modulation. Herein, the implementation of the first robust, non-volatile, phase-change photonic memory is presented. By utilising optical near-field effects for Read, Write and Erase operations, bit storage of up to eight transmission levels is demonstrated in a single device employing Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub> as the active material. These on-chip memory cells feature single-shot read-out of the transmission state and switching energies as low as 13.4pJ at speeds approaching 1GHz. The capability to readily switch between intermediate states is also demonstrated, a feature that requires complex iteration-based algorithms in electronic phase-change memories. This photonic memory is not only the first truly non-volatile memory---a long-term elusive goal in integrated photonics---but could also potentially represent the first multi-level memory, including electronic counterparts, that requires no computational post-processing or drift correction. These findings provide a pathway towards solving the throughput limitations of current computer architectures by eliminating the so-called von-Neumann bottleneck and portend a new paradigm in all-photonic memory, non-conventional computing, and tunable photonic devices. Finally, novel capabilities in electro-optic colour modulation using phase-change materials are demonstrated. In particular, this thesis offers the first implementation of Ag<sub>3</sub>In<sub>4</sub>Sb<sub>76</sub>Te<sub>17</sub>-based optical cavities for colour modulation on low-dimensional multilayer stacks. Moreover, "gray-scale" image writing is demonstrated by establishing intermediate levels of crystallisation via voltage modulation. This finding, in turn, corresponds to the first demonstration of nonvolatile colour-depth modulation in the emerging phase-change materials nanodisplay technology, featuring resolutions down to 50nm. Furthermore, a comprehensive comparison is carried out for two types of materials: growth- (Ag<sub>3</sub>In<sub>4</sub>Sb<sub>76</sub>Te<sub>17</sub>) and nucleation-dominated (Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub>) alloys in terms of colour, energy efficiency, and resolution. These results provide new tools for the new generation of bistable and ultra-high-resolution displays and smart glasses while allowing for other potential applications in photonics and optoelectronics.
18

Počítačové modelování teplotní hystereze při změně skupenství / Computer modelling of phase change hysteresis

Petrášová, Anna January 2021 (has links)
This thesis deals with computer modeling of temperature hysteresis during phase change, namely complete and partial phase change. There is performed a review of methods for modeling temperature hysteresis based on the enthalpy method and the effective heat capacity method. In the case of complete phase change, there are several methods that use the effective heat capacity method, as well as the heat source method, which, on the contrary, is a certain analogy of the enthalpy method. The following are works dealing with modelling of partial phase change, the most interesting of which is due to the validation method of static hysteresis and the method designed by Bony and Citherlet. The second part of this thesis deals with the hysteresis behavior of the material with phase change, which is organic paraffin RT 27. The input data obtained by differential scanning calorimetry was converted to the dependence of the enthalpy on temperature. These curves was represented by piecewise linear function. In the case of partial phase transformations, a modeling method based on the methods proposed by Bonym and Citherlet was designed. An one-dimensional model enabling thermal simulation of the material was implemented in the MATLAB software environment. The results obtained with this simulation are finally compared with a model that does not consider thermal hysteresis.
19

Sb-Te Phase-change Materials under Nanoscale Confinement

Ihalawela, Chandrasiri A. 15 July 2016 (has links)
No description available.
20

A cellular automata approach for the simulation and development of advanced phase change memory devices

Vázquez Diosdado, Jorge Alberto January 2012 (has links)
Phase change devices in both optical and electrical formats have been subject of intense research since their discovery by Ovshinsky in the early 1960’s. They have revolutionized the technology of optical data storage and have very recently been adopted for non-volatile semiconductor memories. Their great success relies on their remarkable properties enabling high-speed, low power consumption and stable retention. Nevertheless, their full potential is still yet to be realized. Operations in electrical phase change devices rely on the large resistivity contrast between the crystalline (low resistance) and amorphous (high resistance) structures. The underlying mechanisms of phase transformations and the relation between structural and electrical properties in phase change materials are quite complex and need to be understood more deeply. For this purpose, we compare different approaches to mathematical modelling that have been suggested to realistically simulate the crystallization and amorphization of phase change materials. In this thesis the recently introduced Gillespie Cellular Automata (GCA) approach is used to obtain direct simulation of the structural phases and the electrical states of phase change materials and devices. The GCA approach is a powerful technique to understand the nanostructure evolution during the crystallization (SET) and amorphization (RESET) processes in phase change devices over very wide length scales. Using this approach, a detailed study of the electrical properties and nanostructure dynamics during SET and RESET processes in a PCRAM cell is presented. Besides the possibility of binary storage in phase change memory devices, there is a wider and far-reaching potential for using them as the basis for new forms of arithmetic and cognitive computing. The origin of such potential lies in a previously under-explored property, namely accumulation which has the potential to implement basic arithmetic computations. We exploit and explore this accumulative property in films and devices. Furthermore, we also show that the same accumulation property can be used to mimic a simple integrate and fire neuron. Thus by combining both a phase change cell operating in the accumulative regime for the neural body and a phase change cell in the multilevel regime for the synaptic weighting an artificial neuromorphic system can be obtained. This may open a new route for the realization of phase change based cognitive computers. This thesis also examines the relaxation oscillations observed under suitable bias conditions in phase change devices. The results presented are performed through a circuit analysis in addition with a generation and recombination mechanism driven by the electric field and carrier densities. To correctly model the oscillations we show that it is necessary to include a parasitic inductance. Related to the electrical states of phase change materials and devices is the threshold switching of the amorphous phase at high electric fields and recent work has suggested that such threshold switching is the result of field-induced nucleation. An electric field induced nucleation mechanism is incorporated into the GCA approach by adding electric field dependence to the free energy of the system. Using results for a continuous phase change thin films and PCRAM devices we show that a purely electronic explanation of threshold switching, rather than field-induced nucleation, provides threshold fields closer to experimentally measured values.

Page generated in 0.0371 seconds