Spelling suggestions: "subject:"[een] PHASE QUANTIZATION"" "subject:"[enn] PHASE QUANTIZATION""
1 |
Low-cost architectures for future MIMO systemsFozooni, Milad January 2017 (has links)
Massive multiple-input multiple-output is a promising technique for the next generation of wireless communication systems which addresses most of the critical challenges associated with concurrent relaying systems, such as digital signal processing complexity, long processing delay, and low latency wireless communications. However, the deployment of conventional fully digital beamforming methods, dedicates one radio frequency (RF) chain to each antenna, is not viable enough due to the high fabrication/implementation cost and power consumption. In this thesis, we envision to address this critical issue by reducing the number of RF chains in a viable analog/digital configuration paradigm which is usually referred to hybrid structure. From another viewpoint, the development of fifth generation enabling technologies brings new challenges to the design of power amplifiers (PAs). In particular, there is a strong demand for low-cost, nonlinear PAs which, however, introduce nonlinear distortions. On the other hand, contemporary expensive PAs show great power efficiency in their nonlinear region. Inspired by this trade-off between nonlinearity distortions and efficiency, finding an optimal operating point is highly desirable, and this is the second key contribution of this thesis.
|
2 |
[en] DISCRETE PRECODING AND ADJUSTED DETECTION FOR MULTIUSER MIMO SYSTEMS WITH PSK MODULATION / [pt] PRECODIFICAÇÃO DISCRETA E DETECÇÃO CORRESPONDENTE PARA SISTEMAS MIMO MULTIUSUÁRIO QUE UTILIZAM MODULAÇÃO PSKERICO DE SOUZA PRADO LOPES 10 September 2021 (has links)
[pt] Com um número crescente de antenas em sistemas MIMO, o consumo de
energia e os custos das interfaces de rádio correspondentes tornam-se relevantes.
Nesse contexto, uma abordagem promissora é a utilização de conversores
de dados de baixa resolução. Neste estudo, propomos dois novos
pré-codificadores ótimos para a sinais de envelope constante e quantização
de fase. O primeiro maximiza a distância mínima para o limite de decisão
(MMDDT) nos receptores, enquanto o segundo minimiza o erro médio
quadrático entre os símbolos dos usuários e o sinal de recepção. O design
MMDDT apresetado nesse estudo é uma generalização de designs anteriores
que baseiam-se em quantização de 1-bit. Além disso, ao contrário do
projeto MMSE anterior que se baseia na resolução de 1-bit, a abordagem
proposta emprega quantização de fase uniforme e a etapa de limite no método
branch-and-bound é diferente em termos de considerar o relaxamento
mais restritivo do problema não convexo, que é então utilizado para um
design sub ótimo também. Além disso, três métodos diferentes de detecção
suave e um esquema iterativo de detecção e decodificação que permite
a utilização de codificação de canal em conjunto com pré-codificação de
baixa resolução são propostos. Além de uma abordagem exata para calcular
a informação extrínseca, duas aproximações com reduzida complexidade
computacional são propostas. Os algoritmos propostos de pré-codificação
branch-and-bound são superiores aos métodos existentes em termos de taxa
de erro de bit. Resultados numéricos mostram que as abordagens propostas
têm complexidade significativamente menor do que a busca exaustiva.
Finalmente, os resultados baseados em um código de bloco LDPC indicam
que os esquemas de processamento de recepção geram uma taxa de erro de
bit menor em comparação com o projeto convencional. / [en] With an increasing number of antennas in multiple-input multiple-output (MIMO) systems, the energy consumption and costs of the corresponding front ends become relevant. In this context, a promising approach is the consideration of low-resolution data converters. In this study two novel optimal
precoding branch-and-bound algorithms constrained to constant envelope signals and phase quantization are proposed. The first maximizes the minimum distance to the decision threshold (MMDDT) at the receivers, while the second minimizes the MSE between the users data symbols and the receive signal. This MMDDT design presented in this study is a generalization of prior designs that rely on 1-bit quantization. Moreover, unlike the prior MMSE design that relies on 1-bit resolution, the proposed MMSE approach employs uniform phase quantization and the bounding step in the branch-and-bound method is different in terms of considering the most restrictive relaxation of the nonconvex problem, which is then utilized for
a suboptimal design also. Moreover, three different soft detection methods and an iterative detection and decoding scheme that allow the utilization of channel coding in conjunction with low-resolution precoding are proposed. Besides an exact approach for computing the extrinsic information, two approximations with reduced computational complexity are devised. The proposed branch-and-bound precoding algorithms are superior to the existing methods in terms of bit error rate. Numerical results show that the proposed approaches have significantly lower complexity than exhaustive search. Finally, results based on an LDPC block code indicate that the proposed receive processing schemes yield a lower bit-error-rate compared
to the conventional design.
|
3 |
Contributions à la sonification d’image et à la classification de sonsToffa, Ohini Kafui 11 1900 (has links)
L’objectif de cette thèse est d’étudier d’une part le problème de sonification d’image
et de le solutionner à travers de nouveaux modèles de correspondance entre domaines
visuel et sonore. D’autre part d’étudier le problème de la classification de son et de le résoudre
avec des méthodes ayant fait leurs preuves dans le domaine de la reconnaissance
d’image.
La sonification d’image est la traduction de données d’image (forme, couleur, texture,
objet) en sons. Il est utilisé dans les domaines de l’assistance visuelle et de l’accessibilité
des images pour les personnes malvoyantes. En raison de sa complexité, un
système de sonification d’image qui traduit correctement les données d’image en son de
manière intuitive n’est pas facile à concevoir.
Notre première contribution est de proposer un nouveau système de sonification
d’image de bas-niveau qui utilise une approche hiérarchique basée sur les caractéristiques
visuelles. Il traduit, à l’aide de notes musicales, la plupart des propriétés d’une
image (couleur, gradient, contour, texture, région) vers le domaine audio, de manière
très prévisible et donc est facilement ensuite décodable par l’être humain.
Notre deuxième contribution est une application Android de sonification de haut
niveau qui est complémentaire à notre première contribution car elle implémente la traduction
des objets et du contenu sémantique de l’image. Il propose également une base
de données pour la sonification d’image.
Finalement dans le domaine de l’audio, notre dernière contribution généralise le motif
binaire local (LBP) à 1D et le combine avec des descripteurs audio pour faire de
la classification de sons environnementaux. La méthode proposée surpasse les résultats
des méthodes qui utilisent des algorithmes d’apprentissage automatique classiques et
est plus rapide que toutes les méthodes de réseau neuronal convolutif. Il représente un
meilleur choix lorsqu’il y a une rareté des données ou une puissance de calcul minimale. / The objective of this thesis is to study on the one hand the problem of image sonification
and to solve it through new models of mapping between visual and sound domains.
On the other hand, to study the problem of sound classification and to solve it with
methods which have proven track record in the field of image recognition.
Image sonification is the translation of image data (shape, color, texture, objects)
into sounds. It is used in vision assistance and image accessibility domains for visual
impaired people. Due to its complexity, an image sonification system that properly conveys
the image data to sound in an intuitive way is not easy to design.
Our first contribution is to propose a new low-level image sonification system which
uses an hierarchical visual feature-based approach to translate, usingmusical notes, most
of the properties of an image (color, gradient, edge, texture, region) to the audio domain,
in a very predictable way in which is then easily decodable by the human being.
Our second contribution is a high-level sonification Android application which is
complementary to our first contribution because it implements the translation to the audio
domain of the objects and the semantic content of an image. It also proposes a dataset
for an image sonification.
Finally, in the audio domain, our third contribution generalizes the Local Binary
Pattern (LBP) to 1D and combines it with audio features for an environmental sound
classification task. The proposed method outperforms the results of methods that uses
handcrafted features with classical machine learning algorithms and is faster than any
convolutional neural network methods. It represents a better choice when there is data
scarcity or minimal computing power.
|
Page generated in 0.0426 seconds