1 |
[en] PRECODING, COMBINING AND POWER ALLOCATION TECHNIQUES FOR RATE-SPLITTING-BASED MULTIUSER MIMO SYSTEMS / [pt] TÉCNICAS DE PRÉ-CODIFICAÇÃO, COMBINAÇÃO E ALOCAÇÃO DE POTÊNCIAS PARA SISTEMAS MIMO MULTIUSUÁRIO COM MÚLTIPLO ACESSO POR PARTIÇÃO DE TAXAANDRÉ ROBERT FLORES MANRIQUE 06 July 2021 (has links)
[pt] Os sistemas de múltiplas antenas empregam diferentes técnicas de processamento
de sinais em ambos extremos do sistema de comunicações para se
beneficiar das múltiplas dimensões espaciais e transmitir para diversos usuarios
usando os mesmos recursos de tempo e frequência. Desta forma, uma alta
eficiência espectral pode ser atingida sem precisar de largura de banda extra.
No entanto, o desempenho depende de uma estimativa do canal altamente precisa
do lado do transmissor, a qual é denominada channel state information
at the transmitter (CSIT). Se o valor estimado do canal for perfeito, o sistema
consegue suprimir a interferência multiusuário (MUI), que é a principal
responsável pela degradação do desempenho do sistema. Porém, supor uma estimativa
perfeita é bastante otimista pois sistemas reais introduzem incerteza
devido ao processo de estimação, a erros de quantização e a retardos próprios
dos sistemas. Nesse contexto, a técnica conhecida como divisão de taxas ou
rate splitting (RS) surge como uma ferramenta promissora para lidar com as
imperfeições na estimativa do canal. RS divide os dados em um fluxo comum
e vários fluxos privados e então sobrepõe o fluxo comum no topo dos fluxos
privados. Esta tese propõe várias técnicas de processamento que aumentam
ainda mais os benefícios dos sistemas RS.
Neste trabalho, consideramos o downlink (DL) de um sistema de comunicações
sem fio onde o transmissor envia mensagens independentes para cada
usuário. A métrica usada para avaliar o desempenho do sistema é a soma das
taxas ergódica (ESR). Diferente dos trabalhos convencionais em RS, consideramos
que os terminais dos usuários estão equipados com múltiplas antenas. Isso
nos permite implementar na recepção combinadores de fluxos que aumentem a
taxa do fluxo comum. Aumentar esta taxa é um dos grandes problemas dos sistemas
RS, uma vez que a taxa comum é limitada pelo pior usuário o que pode
degradar fortemente o desempenho do sistema. Assim, três combinadores de
fluxos diferentes são propostos e as expressões analíticas para calcular a soma
das taxas são apresentadas. Os combinadores são derivados empregando-se os
critérios Min-Max, MRC e MMSE. O critério Min-Max seleciona para cada
usuário a melhor antena para decodificar o símbolo comum. O MRC visa maximizar
o SNR ao decodificar o símbolo comum. Finalmente, o critério MMSE
minimiza o quadrado da diferença entre o símbolo comum e o sinal recebido.
Até o momento, RS foi considerado com precodificadores lineares. Devido
a isto, neste trabalho investigamos o desempenho do RS com precodificadores
não lineares. Para este fim, usamos diferentes tipos de precodificador
Tomlinson-Harashima (THP) baseados nos precodificadores lineares ZF e
MMSE. Em seguida, propomos um algoritmo multi-branch (MB) adequado
para o RS-THP proposto. Este algoritmo cria vários padrões de transmissão
e seleciona o melhor padrão para efetuar a transmissão. Esta técnica de préprocessamento
aumentam ainda mais a soma das taxas obtida, uma vez que o
desempenho do THP depende da ordem dos símbolos, porém também aumenta
a complexidade computacional. Expressões analíticas para calcular a soma das
taxas das técnicas propostas são derivadas por meio de análises estatísticas dos
principais parâmetros.
Finalmente, propomos quatro técnicas adaptativas diferentes de alocação
de potência, as quais se caracterizam por sua baixa complexidade computacional.
Duas destas técnicas são projetadas para sistemas SDMA convencionais,
enquanto as outras duas são projetadas para sistemas RS. Um dos principais
objetivos dos algoritmos propostos é realizar uma alocação de potência
robusta capaz de lidar com os efeitos prejudicias das imperfeições no CSIT.
É importante mencionar que a alocação de potência em sistemas RS é uma
das tarefas mais importantes e deve ser realizada com extremo cuidado. Se
a potência não for alocada corretamente, o desempenho do sistema RS será
bastante degradado e as arquiteturas convencionais, como SDMA e NOMA,
poderão ter um desempenho melhor. No entanto, a alocação de potência em
sistemas RS precisa da solução de problemas complexos de otimização, o que
aumenta o tempo gasto no processamento do sinal. Os algoritmos adaptativos
propostos reduzem a complexidade computacional e são uma solução atrativa
para aplicações práticas em sistemas de grande porte. / [en] Multiple-antenna systems employ different signal processing techniques
at both ends of the communication to exploit the spatial dimensions and serve
multiple users simultaneously in the same time-frequency domain. In this way,
high spectral efficiency can be reached without the need of extra bandwidth.
However, such gain depends on a highly accurate channel state information at
the transmitter (CSIT). Perfect CSIT allows the system to suppress the multi
user interference (MUI), which is the main responsible of the performance
degradation. Nonetheless, assuming perfect CSIT is rather optimistic since
the estimation procedure, quantization errors and delays of real system lead
to CSIT uncertainties. In this context, rate splitting (RS) has arisen as a
promising technique to deal with CSIT imperfections. Basically, RS splits the
data into a common stream and private streams and then superimposes the
common stream on top of the private streams. This thesis proposes several
processing techniques which further enhance the benefits of RS systems.
We consider the downlink (DL) of a wireless communications system,
where the transmitter sends independent messages to each receiver. The ergodic
sum rate (ESR) is adopted as the main metric to evaluate the performance
of the system. Different from conventional RS works, we consider that the
users are equipped with multiple antennas. This allows us to implement stream
combiners for the common stream at the receivers. The implementations of the
stream combiners improves the common rate performance, which is a major
problem of RS systems since the common rate is limited by the performance
of the worst user and can be heavily degraded. In this work, three different
stream combiners are proposed along with analytical expressions to compute
their sum rate performance. Specifically, the combiners are derived employing
the min-max, maximum ratio combining (MRC), and minimum mean square
error (MMSE) criteria. The min-max criterion selects at each user the best
receive antenna to decode the common symbol. The MRC criterion aims at
maximizing the SNR when decoding the common symbol. Finally, the MMSE
criterion minimizes the squared difference between the common symbol and
the received signal.
So far, RS has been predominantly considered with channel inversiontype
linear precoders. Therefore, this motivates us to investigate the performance
of RS with non-linear precoders. For this purpose, we employ different
architectures of the Tomlinson-Harashima precoder (THP) which are based on
the zero-forcing (ZF) and MMSE precoders. We then propose a multi-branch
(MB) algorithm for the proposed RS-THP, which creates several transmit patterns
and selects the best for transmission. This pre-processing techniques
further enhance the sum rate obtained since the performance of THP is dependent
on the symbol ordering but also increases the computational complexity.
Analytical expressions to calculate the sum rate of the proposed techniques
are derived through statistical evaluation of key parameters.
Finally, we propose four different adaptive power allocation techniques,
which are characterized by their low computational complexity. Two of them
are designed for conventional SDMA systems whereas the other two are
intended for RS systems. One major objective of the proposed algorithms is
to perform robust power allocation capable of dealing with the detrimental
effects of imperfect CSIT. It is important to mention that power allocation in
RS systems is one of the critical tasks that should be carefully performed. If
the power is not properly allocated the performance of RS systems is heavily
degraded and conventional architectures such as SDMA and NOMA could
perform better. However, RS rely on solving complex optimization problems
to perform power allocation, increasing the time and effort dedicated to
signal processing. The proposed adaptive power allocation algorithms reduce
the computational complexity and are an attractive solution for practical
applications with large-scale systems.
|
2 |
[en] ON HYBRID BEAMFORMING DESIGN FOR DOWNLINK MMWAVE MASSIVE MU-MIMO SYSTEMS / [pt] PROJETO HÍBRIDO DE FORMAÇÃO DE FEIXE PARA ENLACE DIRETO EM ONDAS MILIMÉTRICAS EM SISTEMAS MASSIVOS MU-MIMO12 November 2020 (has links)
[pt] As comunicações de ondas milimétricas (mmWave) são consideradas
uma tecnologia essencial para os sistemas celulares de próxima geração, dado
que a enorme largura de banda disponível pode potencialmente fornecer
as taxas de vários gigabits por segundo. As técnicas convencionais de
pré-codificação e combinação são impraticáveis nos cenários da mmWave
devido ao custo de fabricação e ao consumo de energia. As alternativas
híbridas foram consideradas uma tecnologia promissora para fornecer um
compromisso entre a complexidade do hardware e o desempenho do sistema.
Um grande número de projetos de pré-codificadores híbridos têm sido
proposto com diferentes abordagens. Uma abordagem possível é procurar
minimizar a distância euclidiana entre o pré-decodificador híbrido e o
pré-decodificador totalmente digital. No entanto, essa abordagem torna o
projeto do pré-codificador híbrido um problema de fatoração da matrices
difícil de lidar devido às restrições de hardware dos componentes analógicos.
Esta tese de doutorado propõe alguns projetos de pré-codificadores e combinadores
híbridos por meio de uma estratégia hierárquica. O problema
híbrido de pré-codificação / combinação é dividido em partes analógicas e
digitais. Primeiro, o pré-codificador / combinador analógico é projetado.
Em seguida, com o pré-codificador / combinador analógico fixo, o précodificador
/ combinador digital é calculado para melhorar o desempenho
do sistema. Além disso, métodos de otimização linear e não linear são empregados
para projetar a parte analógica do pré-codificador / combinador.
A viabilidade dessas propostas é avaliada usando diferentes técnicas de
detecção de dados e analisando o desempenho do sistema em termos de taxa
de erros de bits (BER), sum–rate e outras métricas, em cenários internos
do mmWave, considerando enlace diretos massivo do MU–MIMO.
Além disso, este trabalho propõe um método para encontrar aproximações
analíticas bastante restritas ao desempenho obtido no BER. A metodologia
proposta exigiria o conhecimento da função densidade de probabilidade
(fdp) das variáveis relacionadas que são desconhecidas para os cenários
mmWave. Para resolver este problema, são utilizadas as aproximações fdp
Gamma. As aproximações analíticas do BER resultaram em diferenças não
superiores a 0,5 dB em relação aos resultados da simulação em alto SNR. / [en] Millimeter–wave (mmWave) communications have been regarded as a
key technology for the next–generation cellular systems since the huge available
bandwidth can potentially provide the rates of multiple gigabits per
second. Conventional precoding and combining techniques are impractical
at mmWave scenarios due to manufacturing cost and power consumption.
Hybrid alternatives have been considered as a promising technology to provide
a compromise between hardware complexity and system performance.
A large number of hybrid precoder designs have been proposed with
different approaches. One possible approach is to search for minimizing the
Euclidean distance between hybrid precoder and the full-digital precoder.
However, this approach makes the hybrid precoder design becomes a matrix
factorization problem difficult to deal due to the hardware constraints of
analog components.
This doctoral thesis proposes some hybrid precoder and combiners designs
through a hierarchical strategy. The hybrid precoding/combining problem
is divided into analog and digital parts. First, the analog precoder/combiner
is designed. Then, with the analog precoder/combiner fixed, the digital precoder/
combiner is computed to improve the system performance. Furthermore,
linear and no-linear optimization methods are employed to design the
analog part of the precoder/combiner. The viability of these proposals is evaluated using different data detection techniques and analyzing the system performance in terms of bit error
rate (BER), sum rate, and other metrics, in indoor mmWave scenarios
considering massive MU-MIMO downlink. Also, this work proposes a method to find fairly tight analytic approximations to the obtained BER performance. The methodology proposed would
require the knowledge of the probability density function (pdf) of the variables
involved, which are unknown for mmWave scenarios. In order to solve
this problem, Gamma pdf approximations are used. The analytic BER
approximations resulted in differences no larger than 0.5 dB with respect
to the simulation results in high SNR.
|
3 |
[en] DISCRETE PRECODING AND ADJUSTED DETECTION FOR MULTIUSER MIMO SYSTEMS WITH PSK MODULATION / [pt] PRECODIFICAÇÃO DISCRETA E DETECÇÃO CORRESPONDENTE PARA SISTEMAS MIMO MULTIUSUÁRIO QUE UTILIZAM MODULAÇÃO PSKERICO DE SOUZA PRADO LOPES 10 September 2021 (has links)
[pt] Com um número crescente de antenas em sistemas MIMO, o consumo de
energia e os custos das interfaces de rádio correspondentes tornam-se relevantes.
Nesse contexto, uma abordagem promissora é a utilização de conversores
de dados de baixa resolução. Neste estudo, propomos dois novos
pré-codificadores ótimos para a sinais de envelope constante e quantização
de fase. O primeiro maximiza a distância mínima para o limite de decisão
(MMDDT) nos receptores, enquanto o segundo minimiza o erro médio
quadrático entre os símbolos dos usuários e o sinal de recepção. O design
MMDDT apresetado nesse estudo é uma generalização de designs anteriores
que baseiam-se em quantização de 1-bit. Além disso, ao contrário do
projeto MMSE anterior que se baseia na resolução de 1-bit, a abordagem
proposta emprega quantização de fase uniforme e a etapa de limite no método
branch-and-bound é diferente em termos de considerar o relaxamento
mais restritivo do problema não convexo, que é então utilizado para um
design sub ótimo também. Além disso, três métodos diferentes de detecção
suave e um esquema iterativo de detecção e decodificação que permite
a utilização de codificação de canal em conjunto com pré-codificação de
baixa resolução são propostos. Além de uma abordagem exata para calcular
a informação extrínseca, duas aproximações com reduzida complexidade
computacional são propostas. Os algoritmos propostos de pré-codificação
branch-and-bound são superiores aos métodos existentes em termos de taxa
de erro de bit. Resultados numéricos mostram que as abordagens propostas
têm complexidade significativamente menor do que a busca exaustiva.
Finalmente, os resultados baseados em um código de bloco LDPC indicam
que os esquemas de processamento de recepção geram uma taxa de erro de
bit menor em comparação com o projeto convencional. / [en] With an increasing number of antennas in multiple-input multiple-output (MIMO) systems, the energy consumption and costs of the corresponding front ends become relevant. In this context, a promising approach is the consideration of low-resolution data converters. In this study two novel optimal
precoding branch-and-bound algorithms constrained to constant envelope signals and phase quantization are proposed. The first maximizes the minimum distance to the decision threshold (MMDDT) at the receivers, while the second minimizes the MSE between the users data symbols and the receive signal. This MMDDT design presented in this study is a generalization of prior designs that rely on 1-bit quantization. Moreover, unlike the prior MMSE design that relies on 1-bit resolution, the proposed MMSE approach employs uniform phase quantization and the bounding step in the branch-and-bound method is different in terms of considering the most restrictive relaxation of the nonconvex problem, which is then utilized for
a suboptimal design also. Moreover, three different soft detection methods and an iterative detection and decoding scheme that allow the utilization of channel coding in conjunction with low-resolution precoding are proposed. Besides an exact approach for computing the extrinsic information, two approximations with reduced computational complexity are devised. The proposed branch-and-bound precoding algorithms are superior to the existing methods in terms of bit error rate. Numerical results show that the proposed approaches have significantly lower complexity than exhaustive search. Finally, results based on an LDPC block code indicate that the proposed receive processing schemes yield a lower bit-error-rate compared
to the conventional design.
|
Page generated in 0.0435 seconds