• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Low complexity multiple antenna transmission solutions for next generation wireless communication systems

Hanif, Muhammad 15 August 2016 (has links)
Two of the most prominent techniques to meet the next generation wireless communication system's demands are cognitive radio and massive MIMO systems. Cognitive radio systems improve radio spectrum utilization either by spectrum sharing or by opportunistically utilizing the spectrum of the licensed users. Employing multiple antennas at the transmitter and/or the receiver of the radio can further improve the overall performance of the wireless systems. Massive MIMO systems, on the other hand, improve the spectral and energy efficiencies of currently deployed systems by reaping all the benefits of the multi-antenna systems at a very large scale. The price paid for employing a large number of antennas either at the transmitter or receiver is the high hardware cost. Judicious transmit or receive antenna selection can reduce this cost, while retaining most of the benefits offered by multiple antennas. In my doctoral research, we have presented both upper and lower bounds on the capacity of a general selection diversity system. These novel bounds are simple to compute and can be used in a variety of different fading environments. We have also proposed and analyzed the performance of different antenna selection schemes for both an underlay cognitive radio and a massive MIMO system. Specifically, we have considered both receive and transmit antenna selection in an underlay cognitive radio based on the maximization of secondary link signal-to-interference plus noise ratio. Exact and asymptotic performance analyses of the secondary system with such selections are carried out, and numerical examples are presented to verify the correctness of the analytical results. Several sub-optimal antenna subset selection schemes for both a single-cell and a multi-cell multi-user massive MIMO system are also proposed. Numerical results on the sum rate of the system in different scenarios are presented to verify the superior performance of the proposed schemes over the existing sub-optimal antenna subset selection schemes. Lastly, we have also presented three novel hybrid analog/digital precoding schemes to reduce the hardware and software complexities of a sub-connected massive MIMO system. / Graduate / 0544
2

Practical Precoding Design for Modern Multiuser MIMO Communications

Liang, Le 08 December 2015 (has links)
The use of multiple antennas to improve the reliability and capacity of wireless communication has been around for a while, leading to the concept of multiple-input multiple-output (MIMO) communications. To enable full MIMO potentials, the precoding design has been recognized as a crucial component. This thesis aims to design multiuser MIMO precoders of practical interest to achieve high reliability and capacity performance under various real-world constraints like inaccuracy of channel information acquired at the transmitter, hardware complexity, etc. Three prominent cases are considered which constitute the mainstream evolving directions of the current cellular communication standards and future 5G cellular communications. First, in a relay-assisted multiuser MIMO system, heavily quantized channel information obtained through limited feedback contributes to noticeable rate loss compared to when perfect channel information is available. This thesis derives an upper bound to characterize the system throughput loss caused by channel quantization error, and then develops a feedback quality control strategy to maintain the rate loss within a bounded range. Second, in a massive multiuser MIMO channel, due to the large array size, it is difficult to support each antenna with a dedicated radio frequency chain, thus making high-dimensional baseband precoding infeasible. To address this challenge, a low-complexity hybrid precoding scheme is designed to divide the precoding into two cascaded stages, namely, the low-dimensional baseband precoding and the high-dimensional phase-only processing at the radio frequency domain. Its performance is characterized in a closed form and demonstrated through computer simulations. Third, in a mmWave multiuser MIMO scenario, smaller wavelengths make it possible to incorporate excessive amounts of antenna elements into a compact form. However, we are faced with even worse hardware challenges as mixed signal processing at mmWave frequencies is more complex and power consuming. The channel sparsity is taken advantage of in this thesis to enable a simplified precoding scheme to steer the beam for each user towards its dominant propagation paths at the radio frequency domain only. The proposed scheme comes at significantly reduced complexity and is shown to be capable of achieving highly desirable performance based on asymptotic rate analysis. / Graduate
3

[en] ON HYBRID BEAMFORMING DESIGN FOR DOWNLINK MMWAVE MASSIVE MU-MIMO SYSTEMS / [pt] PROJETO HÍBRIDO DE FORMAÇÃO DE FEIXE PARA ENLACE DIRETO EM ONDAS MILIMÉTRICAS EM SISTEMAS MASSIVOS MU-MIMO

12 November 2020 (has links)
[pt] As comunicações de ondas milimétricas (mmWave) são consideradas uma tecnologia essencial para os sistemas celulares de próxima geração, dado que a enorme largura de banda disponível pode potencialmente fornecer as taxas de vários gigabits por segundo. As técnicas convencionais de pré-codificação e combinação são impraticáveis nos cenários da mmWave devido ao custo de fabricação e ao consumo de energia. As alternativas híbridas foram consideradas uma tecnologia promissora para fornecer um compromisso entre a complexidade do hardware e o desempenho do sistema. Um grande número de projetos de pré-codificadores híbridos têm sido proposto com diferentes abordagens. Uma abordagem possível é procurar minimizar a distância euclidiana entre o pré-decodificador híbrido e o pré-decodificador totalmente digital. No entanto, essa abordagem torna o projeto do pré-codificador híbrido um problema de fatoração da matrices difícil de lidar devido às restrições de hardware dos componentes analógicos. Esta tese de doutorado propõe alguns projetos de pré-codificadores e combinadores híbridos por meio de uma estratégia hierárquica. O problema híbrido de pré-codificação / combinação é dividido em partes analógicas e digitais. Primeiro, o pré-codificador / combinador analógico é projetado. Em seguida, com o pré-codificador / combinador analógico fixo, o précodificador / combinador digital é calculado para melhorar o desempenho do sistema. Além disso, métodos de otimização linear e não linear são empregados para projetar a parte analógica do pré-codificador / combinador. A viabilidade dessas propostas é avaliada usando diferentes técnicas de detecção de dados e analisando o desempenho do sistema em termos de taxa de erros de bits (BER), sum–rate e outras métricas, em cenários internos do mmWave, considerando enlace diretos massivo do MU–MIMO. Além disso, este trabalho propõe um método para encontrar aproximações analíticas bastante restritas ao desempenho obtido no BER. A metodologia proposta exigiria o conhecimento da função densidade de probabilidade (fdp) das variáveis relacionadas que são desconhecidas para os cenários mmWave. Para resolver este problema, são utilizadas as aproximações fdp Gamma. As aproximações analíticas do BER resultaram em diferenças não superiores a 0,5 dB em relação aos resultados da simulação em alto SNR. / [en] Millimeter–wave (mmWave) communications have been regarded as a key technology for the next–generation cellular systems since the huge available bandwidth can potentially provide the rates of multiple gigabits per second. Conventional precoding and combining techniques are impractical at mmWave scenarios due to manufacturing cost and power consumption. Hybrid alternatives have been considered as a promising technology to provide a compromise between hardware complexity and system performance. A large number of hybrid precoder designs have been proposed with different approaches. One possible approach is to search for minimizing the Euclidean distance between hybrid precoder and the full-digital precoder. However, this approach makes the hybrid precoder design becomes a matrix factorization problem difficult to deal due to the hardware constraints of analog components. This doctoral thesis proposes some hybrid precoder and combiners designs through a hierarchical strategy. The hybrid precoding/combining problem is divided into analog and digital parts. First, the analog precoder/combiner is designed. Then, with the analog precoder/combiner fixed, the digital precoder/ combiner is computed to improve the system performance. Furthermore, linear and no-linear optimization methods are employed to design the analog part of the precoder/combiner. The viability of these proposals is evaluated using different data detection techniques and analyzing the system performance in terms of bit error rate (BER), sum rate, and other metrics, in indoor mmWave scenarios considering massive MU-MIMO downlink. Also, this work proposes a method to find fairly tight analytic approximations to the obtained BER performance. The methodology proposed would require the knowledge of the probability density function (pdf) of the variables involved, which are unknown for mmWave scenarios. In order to solve this problem, Gamma pdf approximations are used. The analytic BER approximations resulted in differences no larger than 0.5 dB with respect to the simulation results in high SNR.
4

Ultra Dense Networks Deployment for beyond 2020 Technologies

Giménez Colás, Sonia 01 September 2017 (has links)
A new communication paradigm is foreseen for beyond 2020 society, due to the emergence of new broadband services and the Internet of Things era. The set of requirements imposed by these new applications is large and diverse, aiming to provide a ubiquitous broadband connectivity. Research community has been working in the last decade towards the definition of the 5G mobile wireless networks that will provide the proper mechanisms to reach these challenging requirements. In this framework, three key research directions have been identified for the improvement of capacity in 5G: the increase of the spectral efficiency by means of, for example, the use of massive MIMO technology, the use of larger amounts of spectrum by utilizing the millimeter wave band, and the network densification by deploying more base stations per unit area. This dissertation addresses densification as the main enabler for the broadband and massive connectivity required in future 5G networks. To this aim, this Thesis focuses on the study of the UDN. In particular, a set of technology enablers that can lead UDN to achieve their maximum efficiency and performance are investigated, namely, the use of higher frequency bands for the benefit of larger bandwidths, the use of massive MIMO with distributed antenna systems, and the use of distributed radio resource management techniques for the inter-cell interference coordination. Firstly, this Thesis analyzes whether there exists a fundamental performance limit related with densification in cellular networks. To this end, the UDN performance is evaluated by means of an analytical model consisting of a 1-dimensional network deployment with equally spaced BS. The inter-BS distance is decreased until reaching the limit of densification when this distance approaches 0. The achievable rates in networks with different inter-BS distances are analyzed for several levels of transmission power availability, and for various types of cooperation among cells. Moreover, UDN performance is studied in conjunction with the use of a massive number of antennas and larger amounts of spectrum. In particular, the performance of hybrid beamforming and precoding MIMO schemes are assessed in both indoor and outdoor scenarios with multiple cells and users, working in the mmW frequency band. On the one hand, beamforming schemes using the full-connected hybrid architecture are analyzed in BS with limited number of RF chains, identifying the strengths and weaknesses of these schemes in a dense-urban scenario. On the other hand, the performance of different indoor deployment strategies using HP in the mmW band is evaluated, focusing on the use of DAS. More specifically, a DHP suitable for DAS is proposed, comparing its performance with that of HP in other indoor deployment strategies. Lastly, the presence of practical limitations and hardware impairments in the use of hybrid architectures is also investigated. Finally, the investigation of UDN is completed with the study of their main limitation, which is the increasing inter-cell interference in the network. In order to tackle this problem, an eICIC scheduling algorithm based on resource partitioning techniques is proposed. Its performance is evaluated and compared to other scheduling algorithms under several degrees of network densification. After the completion of this study, the potential of UDN to reach the capacity requirements of 5G networks is confirmed. Nevertheless, without the use of larger portions of spectrum, a proper interference management and the use of a massive number of antennas, densification could turn into a serious problem for mobile operators. Performance evaluation results show large system capacity gains with the use of massive MIMO techniques in UDN, and even greater when the antennas are distributed. Furthermore, the application of ICIC techniques reveals that, besides the increase in system capacity, it brings significant energy savings to UDNs. / A partir del año 2020 se prevé que un nuevo paradigma de comunicación surja en la sociedad, debido a la aparición de nuevos servicios y la era del Internet de las cosas. El conjunto de requisitos impuesto por estas nuevas aplicaciones es muy amplio y diverso, y tiene como principal objetivo proporcionar conectividad de banda ancha y universal. En las últimas décadas, la comunidad científica ha estado trabajando en la definición de la 5G de redes móviles que brindará los mecanismos necesarios para garantizar estos requisitos. En este marco, se han identificado tres mecanismos clave para conseguir el necesario incremento de capacidad de la red: el aumento de la eficiencia espectral a través de, por ejemplo, el uso de tecnologías MIMO masivas, la utilización de mayores porciones del espectro en frecuencia y la densificación de la red mediante el despliegue de más estaciones base por área. Esta Tesis doctoral aborda la densificación como el principal mecanismo que permitirá la conectividad de banda ancha y universal requerida en la 5G, centrándose en el estudio de las Redes Ultra Densas o UDNs. En concreto, se analiza el conjunto de tecnologías habilitantes que pueden llevar a las UDNs a obtener su máxima eficiencia y prestaciones, incluyendo el uso de altas frecuencias para el aprovechamiento de mayores anchos de banda, la utilización de MIMO masivo con sistemas de antenas distribuidas y el uso de técnicas de reparto de recursos distribuidas para la coordinación de interferencias. En primer lugar, se analiza si existe un límite fundamental en la mejora de las prestaciones en relación a la densificación. Con este fin, las prestaciones de las UDNs se evalúan utilizando un modelo analítico de red unidimensional con BSs equiespaciadas, en el que la distancia entre BSs se disminuye hasta alcanzar el límite de densificación cuando ésta se aproxima a 0. Las tasas alcanzables en redes con distintas distancias entre BSs son analizadas, considerando distintos niveles de potencia disponible en la red y varios grados de cooperación entre celdas. Además, el comportamiento de las UDNs se estudia junto al uso masivo de antenas y la utilización de anchos de banda mayores. Más concretamente, las prestaciones de ciertas técnicas híbridas MIMO de precodificación y beamforming se examinan en la banda milimétrica. Por una parte, se analizan esquemas de beamforming en BSs con arquitectura híbrida en función de la disponibilidad de cadenas de radiofrecuencia en escenarios exteriores. Por otra parte, se evalúan las prestaciones de ciertos esquemas de precodificación híbrida en escenarios interiores, utilizando distintos despliegues y centrando la atención en los sistemas de antenas distribuidos o DAS. Además, se propone un algoritmo de precodificación híbrida específico para DAS, y se evalúan y comparan sus prestaciones con las de otros algoritmos de precodificación utilizados. Por último, se investiga el impacto en las prestaciones de ciertas limitaciones prácticas y deficiencias introducidas por el uso de dispositivos no ideales. Finalmente, el estudio de las UDNs se completa con el análisis de su principal limitación, el nivel creciente de interferencia en la red. Para ello, se propone un algoritmo de control de interferencias basado en la partición de recursos. Sus prestaciones son evaluadas y comparadas con las de otras técnicas de asignación de recursos. Tras este estudio, se puede afirmar que las UDNs tienen gran potencial para la consecución de los requisitos de la 5G. Sin embargo, sin el uso conjunto de mayores porciones del espectro, adecuadas técnicas de control de la interferencia y el uso masivo de antenas, las UDNs pueden convertirse en serios obstáculos para los operadores móviles. Los resultados de la evaluación de prestaciones de estas tecnologías confirman el gran aumento de la capacidad de las redes mediante el uso masivo de antenas y la introducción de mecanismos de I / A partir de l'any 2020 es preveu un nou paradigma de comunicació en la societat, degut a l'aparició de nous serveis i la era de la Internet de les coses. El conjunt de requeriments imposat per aquestes noves aplicacions és ampli i divers, i té com a principal objectiu proporcionar connectivitat universal i de banda ampla. En les últimes dècades, la comunitat científica ha estat treballant en la definició de la 5G, que proveirà els mecanismes necessaris per a garantir aquests exigents requeriments. En aquest marc, s'han identificat tres mecanismes claus per a aconseguir l'increment necessari en la capacitat: l'augment de l'eficiència espectral a través de, per exemple, l'ús de tecnologies MIMO massives, la utilització de majors porcions de l'espectre i la densificació mitjançant el desplegament de més estacions base per àrea. Aquesta Tesi aborda la densificació com a principal mecanisme que permetrà la connectivitat de banda ampla i universal requerida en la 5G, centrant-se en l' estudi de les xarxes ultra denses (UDNs). Concretament, el conjunt de tecnologies que poden dur a les UDNs a la seua màxima eficiència i prestacions és analitzat, incloent l'ús d'altes freqüències per a l'aprofitament de majors amplàries de banda, la utilització de MIMO massiu amb sistemes d'antenes distribuïdes i l'ús de tècniques distribuïdes de repartiment de recursos per a la coordinació de la interferència. En primer lloc, aquesta Tesi analitza si existeix un límit fonamental en les prestacions en relació a la densificació. Per això, les prestacions de les UDNs s'avaluen utilitzant un model analític unidimensional amb estacions base equidistants, en les quals la distància entre estacions base es redueix fins assolir el límit de densificació quan aquesta distància s'aproxima a 0. Les taxes assolibles en xarxes amb diferents distàncies entre estacions base s'analitzen considerant diferents nivells de potència i varis graus de cooperació entre cel·les. A més, el comportament de les UDNs s'estudia conjuntament amb l'ús massiu d'antenes i la utilització de majors amplàries de banda. Més concretament, les prestacions de certes tècniques híbrides MIMO de precodificació i beamforming s'examinen en la banda mil·limètrica. D'una banda, els esquemes de beamforming aplicats a estacions base amb arquitectures híbrides és analitzat amb disponibilitat limitada de cadenes de radiofreqüència a un escenari urbà dens. D'altra banda, s'avaluen les prestacions de certs esquemes de precodificació híbrida en escenaris d'interior, utilitzant diferents estratègies de desplegament i centrant l'atenció en els sistemes d' antenes distribuïdes (DAS). A més, es proposa un algoritme de precodificació híbrida distribuïda per a DAS, i s'avaluen i comparen les seues prestacions amb les de altres algoritmes. Per últim, s'investiga l'impacte de les limitacions pràctiques i altres deficiències introduïdes per l'ús de dispositius no ideals en les prestacions de tots els esquemes anteriors. Finalment, l' estudi de les UDNs es completa amb l'anàlisi de la seua principal limitació, el nivell creixent d'interferència entre cel·les. Per tractar aquest problema, es proposa un algoritme de control d'interferències basat en la partició de recursos. Les prestacions de l'algoritme proposat s'avaluen i comparen amb les d'altres tècniques d'assignació de recursos. Una vegada completat aquest estudi, es pot afirmar que les UDNs tenen un gran potencial per aconseguir els ambiciosos requeriments plantejats per a la 5G. Tanmateix, sense l'ús conjunt de majors amplàries de banda, apropiades tècniques de control de la interferència i l'ús massiu d'antenes, les UDNs poden convertir-se en seriosos obstacles per als operadors mòbils. Els resultats de l'avaluació de prestacions d' aquestes tecnologies confirmen el gran augment de la capacitat de les xarxes obtingut mitjançant l'ús massiu d'antenes i la introducci / Giménez Colás, S. (2017). Ultra Dense Networks Deployment for beyond 2020 Technologies [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86204

Page generated in 0.0254 seconds