Spelling suggestions: "subject:"[een] POLYCYCLIC AROMATIC HYDROCARBONS"" "subject:"[enn] POLYCYCLIC AROMATIC HYDROCARBONS""
51 |
The hepatotoxicity of the isomers of dichlorobenzene: Structure-toxicity relationships and interactions with carbon tetrachloride.Stine, Eric Randal., Stine, Eric Randal. January 1988 (has links)
The three isomers of dichlorobenzene (DCB) exhibit marked differences in hepatotoxicity following intraperitoneal (ip) administration in male F-344 rats. Plasma GPT activity, measured 24 hours post exposure, was elevated to approximately 4080 units/ml following a 1.8 mmol/kg dose of o-DCB. Conversely, n-DCB produced only a moderate elevation (306 units/ml) following a 4.5 mmol/kg dose, while p-DCB produced no elevation in GPT activity at this dose (24 units/ml). Ultra-structurally, o- and m-DCB induced elevations in GPT activity were associated with a centrilobular pattern of hepatic necrosis. The role of cytochrome P-450 mediated bioactivation in DCB-induced hepatotoxicity was demonstrated by elevated GPT activities following an otherwise nontoxic 0.9 mmol/kg dose of either o- or m-DCB in phenobarbital pretreated animals (16770 and 21540 units/ml, respectively). The paraisomer of DCB showed no induction of toxicity with phenobarbital pretreatment. Hepatic glutathione (GSH) concentrations were reduced 0.5, 3 and 5 hours after a 1.8 mmol/kg dose of either o- or m-DCB, a dose which produces hepatotoxicity only for o-DCB. Pretreatment of animals with phorone depleted hepatic GSH to 15% of control levels within two hours; subsequent ip administration of either o- or m-DCB (1.8 mmol/kg) produced approximately equivalent elevations in GPT activity for both isomers (5749 ± 648 and 4732 ± 857 units/ml, respectively). In vitro incubations of o- and m-DCB with GSH and rat liver cytosolic fraction, suggested that GSH may bind m-DCB without prior bioactivation, thereby reducing the hepatotoxicity of this isomer relative to the more toxic ortho isomer. The interactive hepatotoxicity of the dichlorobenzenes with carbon tetrachloride (CCl₄) was also investigated. Concomitant ip injection of CCl₄ (1.0 mmol/kg) and o-DCB (2.7 mmol/kg) produced a marked inhibition of o-DCB hepatotoxicity, as measured by GPT activity (approximately 200 units/ml vs. 7450 units/ml for o-DCB alone). The mechanism of this inhibition of o-DCB hepatotoxicity was shown to be a reduction in the cytochrome P-450 mediated bioactivation of o-DCB, by CCl₄. A similar inhibition of o-DCB hepatotoxicity was seen following administration of CCl₄ as a pretreatment, via the drinking water. Concomitant ip administration of CCl₄ with either m- or p-DCB also produced a reduction in the metabolism of the dichlorobenzene.
|
52 |
Polycyclic Aromatic Hydrocarbons (PAH) Exposure in Firefighter RecruitsJaskolka, John E. January 2009 (has links)
No description available.
|
53 |
Polycyclic Aromatic Hydrocarbons and Redox Parameters in a Creosote-Contaminated AquiferElliott, Mark 20 February 2001 (has links)
A groundwater monitoring study was conducted as part of a comprehensive program to remediate a former wood-preserving site that was contaminated with creosote. Twenty-five multi-level samplers (MLSs) were installed on-site and groundwater samples were collected and tested regularly between March 1998 and July 2000. Nearly one-thousand hybrid poplar trees were planted on-site in 1997 to help contain the groundwater plume and enhance phytoremediation. Ten polycyclic aromatic hydrocarbons (PAHs) were monitored along with several terminal electron acceptors (TEAs) and their reduced end products. The focus of the study was to determine the extent of natural biodegradation in the subsurface and assess the role of the poplar trees in site remediation.
Since monitoring began, considerable progress has been made remediating the site and the contaminant plume has been shrinking consistently. PAH levels in the groundwater and soil have been reduced and individual MLSs show consistently decreasing contamination.
At this point in the study it cannot be conclusively determined what impact the poplar trees are having on the progressing site remediation. However, there is a wealth of evidence indicating that natural biodegradation is playing a major role in site cleanup.
Monitoring of TEAs indicates suggests that there are aerobic zones in the site aquifer, but that reduced conditions exist as well. Dissolved oxygen (DO) was found in many MLS ports, but other ports were devoid of both DO and nitrate and contained large quantities of aqueous Fe(II). Oxygen, nitrate and Fe(III) are being reduced on-site and data suggests that they are being used in the biological oxidation of PAHs.
Although laboratory studies document the oxidation of PAHs under sulfate-reducing conditions, high aqueous sulfate values were recorded throughout the site, regardless of the level of contamination. Several possible mechanisms are proposed to explain the coexistence of high sulfate and PAHs in the site aquifer. The system may be redox-buffered by excess solid Fe(III) and Mn(III, IV) oxides. Also, dissimilatory sulfate-reducers are strict anaerobes and oxygen-rich rainwater may be toxic to them.
The presence of a layer of coal below land surface creates pyrite oxidation conditions similar to those encountered in conjunction with acid mine drainage. The MLSs most affected by the coal layer have less PAHs and DO, lower pH, and higher sulfate and Fe(II) levels than other wells.
The oxidation-reduction status of each MLS, based on oxygen, nitrate and Fe(II) measurements, appears to be closely related to the level of PAH contamination, suggesting that PAHs are the primary substrate being biologically oxidized in the site aquifer. These findings tend to support the general belief that the major limitation to natural biodegradation in subsurface environments is the delivery of adequate supplies of suitable TEAs to contaminated zones. / Master of Science
|
54 |
Identification and toxicological evaluation of polycyclic aromatic hydrocarbons in used crankcase oil. / CUHK electronic theses & dissertations collectionJanuary 1996 (has links)
by Jian Wang. / Thesis (Ph.D.)--Chinese University of Hong Kong, 1996. / Includes bibliographical references (p. 154-171). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web.
|
55 |
Isolation and partial characterization of PCB and PAH-degrading bacterial consortia from contaminated sites in Stephenville and Argentia, Island of Newfoundland /Squires-Parsons, Deborah V., January 2005 (has links)
Thesis (M.Sc.)--Memorial University of Newfoundland, 2005. / Restricted until October 2006. Bibliography: leaves 99-106.
|
56 |
Toxicity and metabolism of alkyl-polycyclic aromatic hydrocarbons in fishTurcotte, Dominique 29 August 2008 (has links)
Alkyl-polycyclic aromatic hydrocarbons (alkyl-PAHs) constitute more than 90% of the total PAHs in crude oil and are the main constituents toxic to fish. Little characterization of alkyl-PAHs has been reported and is needed to predict the effects of crude oil following spills.
The objectives of this thesis were: (1) to evaluate the toxicity of alkyl-phenanthrenes and alkyl-anthracenes to the early life-stages of medaka (Oryzias latipes) using the partition controlled delivery of toxicants (PCD); (2) to investigate the effect of light on alkyl-anthracene toxicity; (3) to further characterize the PCD method; (4) to better understand alkyl-PAH mechanisms of toxicity; and (5) to identify the major phase I and phase II alkyl-PAH metabolites in rainbow trout (Oncorhynchus mykiss) and in medaka by both in vitro and in vivo methods.
It was determined that the toxicity of both series of alkyl-PAHs increased with the number of carbon substituents on the rings. Some alkyl-PAHs had EC50 values lower than the value from conventional semi-static exposure methods. These values were below the water solubility limit, consistent with the ability of PCD to correct for values from nominal concentrations above solubility. PCD provided stable concentrations for up to 17 days but could not always compensate for losses of alkyl-anthracenes by photodegradation.
Both series of alkyl-PAHs were toxic through different mechanisms that resulted from their physical and chemical properties. Alkyl-phenanthrenes such as 7-isopropyl-1-methylphenanthrene (retene) were more toxic to medaka embryos than phenanthrene. The appearance of blue sac disease suggested toxicity enhancement through the aryl hydrocarbon receptor pathway. Alkyl-anthracenes were toxic by narcosis in the absence of light and by phototoxicity in the presence of light. The photoproducts of alkyl-anthracenes were not toxic to fish.
The in vitro phase I metabolism by rainbow trout CYP1a enzymes and in vivo phase II metabolism in rainbow trout produced alkyl-anthracenes metabolites substituted mainly on the ring system. The phase II in vivo metabolites of alkyl-phenanthrenes in medaka larvae were substituted mainly on their alkyl chains. For all alkyl-PAHs, a predominance of glucuronide conjugates was identified in the phase II metabolites.
This characterization of the toxicity of alkyl-PAHs may contribute to predicting the toxicity of crude oil based on its composition. / Thesis (Ph.D, Chemistry) -- Queen's University, 2008-08-29 14:18:10.308
|
57 |
ASSESSMENT OF POLYCYCLIC AROMATIC HYDROCARBON BIOAVAILABILITY FROM SOIL USING THE JUVENILE SWINE MODEL2016 January 1900 (has links)
Polycyclic aromatic hydrocarbons (PAHs) are common soil contaminants due to their lipophilic nature which limits partitioning to water or air. Soil properties such as organic carbon can affect PAH release from soil, and thus affect PAH bioavailability of ingested soil. Risk assessment of PAHs in soil generally assumes equal bioavailability of PAHs ingested in soil compared to PAHs ingested in reference dose media, leading to environmental cleanup guidelines that are potentially too conservative. This research intended to use the juvenile swine model to assess PAH bioavailability from impacted soil to better inform bioavailability estimates for risk assessment. This was done by assessing PAH bioavailability from single and repeated exposure to PAHs in different spiked exposure media, assessing PAH bioavailability from soil collected from PAH impacted sites, and assessing biomarkers of exposure and effect following PAH exposure.
The effect of exposure duration on bioavailability was assessed because people are usually chronically exposed to PAHs, rather than acutely exposed, as most bioavailability studies are performed, and chronic exposure may lead to increases in xenobiotic metabolizing enzymes and transporters which may affect bioavailability. This research found that exposure duration did not significantly affect anthracene and benzo[a]pyrene bioavailability (p>0.075), but exposure media did (p<0.004). These results suggest that exposure medium has a more important effect on bioavailability than exposure duration, and also bioavailability calculated from a single exposure is appropriate for use in risk assessment.
Bioavailability from 24 naturally impacted soils was assessed to determine which soil characteristics had the greatest effect on PAH bioavailability. Area under the curve (AUC) measurements for benzo[a]pyrene (BaP) and anthracene in swine blood after oral exposure from a soil matrix for benzo[a]pyrene and anthracene in soils had s very poor relationship with soil concentrations in soils collected from impacted sites (r2<0.15), but a very strong relationship with soil concentrations from spiked artificial soils (r2<0.95). As spiked soils had much higher concentrations of PAH, these results suggest there is a point of departure in soil concentrations where internal exposure becomes linearly related to soil concentration. Point of departure modeling indicates that this point occurs at soil PAH concentrations greater than 1,900 mg kg-1. Thus, risk assessment can assume a constant exposure to PAHs at soil concentrations lower than the point of departure. Comparison of terminal rate constants from intravenous (IV) exposure to PAHs and oral exposure to PAHs in a soilmatrix suggest that flip-flop kinetics occur in swine, where absorption occurs at a slower rate than elimination. Flip-flop kinetics likely explains the lack of relationship between real world soil concentrations and area under the curve measurements as absorption is the rate limiting step of elimination.
Biomarkers of exposure and effect were assessed in swine liver and ileum tissue, as well as blood following single and subchronic exposure to PAHs to determine if relationships could be drawn between exposure magnitude and duration and biomarker formation. Biomarkers included cytochrome P450 (P450) 1A1, 1A2, and 1B1 expression and activity as biomarkers of exposure and DNA adducts, carbonylated proteins, and micronucleated reticulocytes as biomarkers of effect. Biomarkers of exposure were not affected by exposure magnitude or duration, indicating that they would serve best as exposure markers rather than indicators of bioavailability or other effects. However, DNA adduct and protein carbonyl formation was significantly affected by exposure duration (p<0.045), but micronuclei formation was not. The micronuclei results suggest the liver was effective at clearing PAHs to non-toxic metabolites at the study doses, while tissue biomarkers of effect may correlate more effectively with exposure iv
length and magnitude of dose. This work indicates that PAH bioavailability from soil is lower than 100%, but additional work needs to be done to determine soil characteristics that affect bioavailability and to determine a bioavailability value relative to reference material.
|
58 |
MECHANISMS OF RESISTANCE TO HALOGENATED AND NON-HALOGENATED AHR LIGANDS IN CHRONICALLY CONTAMINATED KILLIFISH POPULATIONSArzuaga, Xabier 01 January 2004 (has links)
Chronically contaminated killifish from Newark Bay (NB) NJ, and New Bedford Harbor (NBH) MA, have developed resistance to halogenated aromatic hydrocarbons that bind to and activate the aryl hydrocarbon receptor (AHR). To study the mechanisms of resistance, adult killifish were exposed to halogenated and non-halogenated AHR ligands and enzymatic and toxicological endpoints were measured in adult and embryonic fish.
The chlorinated and non-chlorinated AHR ligands 3,34,4-tetrachlorobiphenyl (PCB77) and benzo-a-pyrene (B[a]P) induced cytochrome P450 1A (CYP1A) in reference site, but not in NB killifish. Expression of CYP3A (not part of the AHR gene battery) was inducible only in Flax Pond killifish. Basal expression of the phase II enzyme glutathione-s-transferase (GST) was higher in NB killifish. These results suggest that NB killifish are resistant to CYP1A induction by chlorinated and non-chlorinated AHR ligands. Higher basal GST activity observed in NB killifish could be protective against toxicity caused by contaminants found in this site. Activation of AHR and induction of CYP1A, by AHR ligands has been associated with the toxic effects caused by these chemicals. To determine the association between resistance to CYP1A induction and the toxicity caused by AHR ligands, CYP1A activity, developmental deformities and reactive oxygen species (ROS) production were measured in reference site and contaminated (NB and NBH) killifish embryos exposed to AHR ligands. 3,34,45-pentachlorobiphenyl (PCB126) and 3-methylcholantherene (3-MC) induced CYP1A, and ROS production in reference site embryos. NB and NBH embryos were resistant to PCB126 induction of CYP1A, but responded to 3-MC. Killifish embryos from NB and NBH were resistant to PCB126 induced deformities. PCB126 and 3-MC did not increase ROS production in NB or NBH killifish embryos. Alpha-naphthoflavone (ANF) (an AHR/CYP1A inhibitor) blocked PCB126 mediated deformities and CYP1A induction in reference site embryos, but increased ROS production. The P450 inhibitor, piperonyl butoxide (PBO) was able to block PCB126 mediated induction of CYP1A activity and ROS production. These results suggest that PCB126 induced deformities are dependent on activation of AHR and CYP1A induction. In chronically contaminated killifish populations, loss of sensitivity to coplanar PCBs and PAHs could be through reduced expression of AHR, or altered DNA sequence or methylation status of the CYP1A gene promoter. Hepatic AHR expression, measured by photoaffinity labeling, was lower in NB killifish than reference site animals, suggesting that NB killifish express less AHR protein. DNA sequence analysis did not reveal considerable differences between contaminated and reference site populations, however additional DNA fragments were observed in some promoters but not in others. The methylation of the CYP1A promoters was studied using methylation sensitive restriction enzymes and no differences were detected between reference site and NB killifish. Treatment with the DNA methyltransferase inhibitor AzaC did not restore CYP1A induction by PCB126 in NB killifish. These studies suggest that resistance to activation of AHR and induction of xenobiotic activating enzymes (CYP1A and CYP3A) in combination with increased expression of conjugating enzymes (GST) protects chronically contaminated killifish against these chemicals.
|
59 |
The effect of soil pH on degradation of polycyclic aromatic hydrocarbonsPawar, Rakesh Mahadev January 2012 (has links)
The environmental fate of polycyclic aromatic hydrocarbons (PAH) is a significant issue, raising interest in bioremediation. However, the physio-chemical characteristics of PAHs and the physical, chemical, and biological properties of soils can drastically influence in the degradation. Moreover, PAHs are toxic and carcinogenic for humans and their rapid degradation is of great importance. The process of degradation of pollutants can be enhanced by manipulating abiotic factors. The effect of soil pH on degradation of PAHs with a view to manipulating soil pH to enhance the bioremediation of PAH’s was studied. The degradation rate of key model PAHs (Phenanthrene, Anthracene, Fluoranthene, and Pyrene) was monitored in J Arthur Brower’s topsoil modified to a range of pH between pH 4.0 and pH 9.0 at half pH intervals. Photo-catalytic oxidation of PAHs in the presence of a catalyst (TiO2) under UV light at two different wavelengths was studied. The degradation of PAHs during photo-catalytic oxidation was carried out at varying soil pH, whilst the degradation rate of each individual PAH was monitored using HPLC. It was observed that pH 6.5 was most suitable for the photo-degradation of all the PAHs, whilst in general acidic soil had greater photo-degradation rates than alkaline soil pH. Photo-degradation of PAHs at 375 nm exhibited greater degradation rates compared to 254 nm. Phenanthrene at both the wavelengths had greater degradation rate and pyrene has lower degradation rate of the four PAHs. Pure microbial cultures were isolated from road-side soil by shaken enrichment culture and characterized for their ability to grow on PAHs. Bacterial PAH degraders, isolated via enrichment were identified biochemically and by molecular techniques using PCR amplification and sequencing of 16S rDNA. Sequences were analyzed using BLAST (NCBI) and their percentage identity to known bacterial rDNA sequences in the GeneBank database (NCBI) was compared. The 6 bacterial strains were identified as Pseudomonas putida, Achromobacter xylosoxidans, Microbacterium sp., Alpha proteobacterium, Brevundimonas sp., Bradyrhizobium sp. Similarly, fungal PAH degraders were identified microscopically and with molecular techniques using PCR amplification and sequencing of 18S rDNA and identified as Aspergillus niger and Penicillium freii. Biodegradation of four PAHs with two and four aromatic rings were studied in soil with inoculation of the six identified bacteria and two identified fungi over a range of pH. It was observed that pH 7.5 was most suitable for the degradation of all the PAHs maintained in the dark. A degradation of 50% was observed in soil pH 7.5 within first three days which was a seventh of the time taken at pH 5.0 and pH 6.5 (21 days). Greater fungal populations were found at acidic soil pH and alkaline soil pH, in comparison with neutral pH 7.0. Pencillium sp. was found to be more prevalent at acidic pH whilst Aspergillus sp. was found to be more prevalent at pH 7.5-8.0. Bacterial populations were greater at pH 7.5 which was highly correlated with soil ATP levels. It was therefore evident that the greatest rates of degradation were associated with the greatest bacterial population. Soil enzyme activities in general were also greatest at pH 7.5. The converse effect of pH was found with fastest rate of photo-catalytic degradation at the optimal conditions were observed at acidic condition in soil pH 6.5 whilst, the results obtained during biodegradation at the optimal conditions exhibits fastest rate of degradation at alkaline conditions particularly at pH 7.5. Thus, manipulation of soil pH to 7.5 has significant potential to dramatically increase the degradation rate of PAHs.
|
60 |
A Quenchofluorometric Study of Polycyclic Aromatic Hydrocarbons in Molecularly Organized MediaPandey, Siddharth 05 1900 (has links)
Detection, identification and separation of polycyclic aromatic compounds in environmental samples are of extreme importance since many of these compounds are well known for their potential carcinogenic and/or mutagenic activities. Selective quenching of molecular fluorescence can be utilized effectively to analyze mixtures containing different polycyclic aromatic hydrocarbons. Molecularly organized assemblies are used widely in detection and separation of these compounds mainly because of less toxicity and enhanced solubilization capabilities associated with these media. Feasibility of using nitromethane and the alkylpyridinium cation as selective fluorescence quenching agents for discriminating between alternant versus nonalternant polycyclic aromatic hydrocarbons (PAHs) is critically examined in several molecularly organized micellar solvent media. Fluorescence quenching is used to probe the structural features in mixed micelles containing the various combinations of anionic, cationic, nonionic and zwitterionic surfactants. Experimental results provide valuable information regarding molecular interactions between the dissimilar surfactants.
|
Page generated in 0.0388 seconds