Spelling suggestions: "subject:"[een] PRETREATMENT"" "subject:"[enn] PRETREATMENT""
11 |
Ultrasonic Pretreatment: Impact on Solubilization, Biogas Production and Kinetics of Anaerobic Digestion of Conventional and Biofilm Waste SludgesRoebuck, Peter January 2018 (has links)
Anaerobic digestion is a useful method for stabilizing and reducing the waste activated sludges (WAS) produced from biological secondary treatment. Pretreatments can make anaerobic digestion more efficient. However, the study of anaerobic digestion and pretreatments is limited to a focus in treating conventional WAS. Therefore, WAS from three non-conventional municipal wastewater treatment systems, a rotating biological contactor (RBC), a lagoon, and a moving bed bioreactor (MBBR), were digested anaerobically to determine the sludges’ biogas potentials compared to a conventional WAS. All three WAS had lower biogas potential normalized per volatile solids than conventional sludge by 46% + 6 (MBBR), 63% + 6 (RBC), and 77% + 7 (lagoon). The four sludges were pretreated with ultrasonic energies of 800 - 6550 kJ/kg TS to illustrate impact of sludge type on biogas production, solubilization, and digestion kinetics. All four sludge types responded uniquely to the same levels of sonication energies. The greatest increase in biogas production over the control of pretreated sludge did not coincide consistently with greater sonication energy but occurred within a solubilization range of 2.9 – 7.4% degree of disintegration (DD) and are as follows: 5% + 3 biogas increase for conventional sludge, 12% + 9 for lagoon, 15% + 2 for MBBR and 20% + 2 for RBC. The yield of biogas production related to soluble COD decreases with increased sonication energy. Hence it is likely that sonication produces refractory COD or causes inhibition in biogas production. The effect of sonication on digestion kinetics was inconclusive with the application of Modified Gompertz, Reaction Curve, and First Order models to biogas production. Diauxic growth patterns of biogas production of sonicated conventional waste demonstrates that the active time of digestion can be decreased through the conversion of less preferential substrates into existing, preferential substrates.
|
12 |
Integrated bioprocess to boost cellulosic bioethanol titers and yieldsXu, Youjie January 1900 (has links)
Doctor of Philosophy / Department of Biological & Agricultural Engineering / Donghai Wang / Among potential alternative liquid fuels, bioethanol is the widest utilized transportation fuels and mainly made from grains. Cellulosic biofuels provide environmental benefits not available from grain or sugar-based biofuels and are considered as a solid foundation to meet transportation fuels needs in a low-carbon economy, albeit with electrified vehicles and other technical advances. The objective of this research was to develop and optimize various bioprocessing units to boost cellulosic bioethanol titers and yields in order to accelerate the commercialization of cellulosic bioethanol production.
The results showed high-solids biomass bioconversion (12%, w/v) was inefficient in the laboratory rotary shaker. However, a horizontal reactor with good mixing was effective for high solids loading (20%, w/v), yielding 75 g/L of glucose. To achieve the minimal economical ethanol distillation requirement of 40 g/L, integrated bioprocesses were conducted to boost ethanol titers and yields through co-fermentation of starchy grain and cellulosic biomass. The maximum ethanol concentration (68.7 g/L) was achieved at the corn flour and hydrothermal-treated corn stover ratio of 12:12 using raw starch granular enzyme with the ethanol yield of 86.0%. Co-fermentation of starchy substrate with hydrolysate liquor from saccharified biomass was able to significantly enhance ethanol concentration and reduce energy cost for distillation without sacrificing ethanol yields. These results indicated integration of first and second generation ethanol production could significantly accelerate the commercialization of cellulosic biofuel production. Novel technology, modified simultaneous saccharification and fermentation, was firstly established to enhance ethanol titers and yields, which achieved high ethanol titers of 72.3 g/L at high biomass loadings of 30% (w/v) with 70.0% ethanol yield.
|
13 |
Conversion of Industrial Waste and Wastewaters into Lipids Suitable for Biodiesel ProductionAmirSadeghi, Marta 09 December 2016 (has links)
The potential of oleaginous yeast Rhodotorula glutinis for the sustainable production of biodiesel feedstock via fermentation of lignocellulosic biomass in pulp and paper wastewater as a fermentation media was investigated. The overall objective was to increase the levels of lipid feedstock in oleaginous yeast in order to reduce biodiesel production cost. To meet sustainable production of biodiesel, industrial wastewater and waste lignocellulose biomass were used as cultivation media and carbon source, respectively. Pulp and paper wastewater effluent was selected as a source of water and nutrients for the production of microbial lipids due to its environmental pollution as it creates large volume of wastewater discharge with high chemical oxygen demand (COD). Since medium composition and process fermentation condition can significantly affect the fermentative performance of oleaginous microorganisms, to find the optimum cultivation condition, design of experiment combined with RSM optimization technique was performed, which has been shown to be successful to predict the optimum condition for the biomass and lipid production in batch fermentation. In addition, lignocellulosic biomass hydrolysate was used as a substrate to improve the cost associated with feedstock fermentation. Lignocellulosic hydrolysate, a product of degradation of lignocelllosic biomass, contains degradation by-products such as 5- hydroxymethylfurfural (HMF), furfural and acetic acid that are known as major inhibitors that influences microorganism growth process. Therefore, their impacts on the fermentative performance and lipid productivity of oleaginous yeast were explored. A detailed operating condition and equipment design for the process of biocrude production from pulp and paper wastewater on a commercial scale was developed. A technological assessment of the process was performed to evaluate their technical benefits and limitations. Results show that pulp and paper wastewater can be used as a cultivation media for the production of microbial lipids using R. glutinis. However, its carbon content has to be improved. Analysis of the design and cost of the process showed that acid hydrolysis process using paper mill sludge as lignocellulosic biomass required the smallest process equipment units but at a higher raw material cost compared to fermentation process.
|
14 |
Lime pretreatment and enzymatic hydrolysis of corn stoverKim, Se Hoon 29 August 2005 (has links)
Renewable energy sources, such as lignocellulosic biomass, are environmentally friendly because they emit less pollution without contributing net carbon dioxide to the atmosphere. Among lignocellulosic biomass, corn stover is a very useful feedstock to economically produce environmentally friendly biofuels. Corn stover was pretreated with an excess of calcium hydroxide (0.5 g Ca(OH)2/g raw biomass) in non-oxidative and oxidative conditions at 25, 35, 45, and 55oC. The optimal condition is 55oC for 4 weeks with aeration, determined by yields of glucan and xylan. The overall yields of glucose (g glucan hydrolyzed/100 g original glucan) and xylose (g xylan hydrolyzed/100 g original xylan) were 91.3 and 51.8 at 15 FPU/g cellulose, respectively. Furthermore, when considering the dissolved fragments of glucan and xylan in the pretreatment liquors, the overall yields of glucose and xylose were 93.2 and 79.5 at 15 FPU/g cellulose, respectively. The pretreatment liquor has no inhibitory effect on ethanol fermentation using Saccharomyces cerevisiae D5A. At the recommended condition, only 0.073 g Ca(OH)2 was consumed per g of raw corn stover. Under extensive delignification conditions, 87.5% of the initial lignin was removed. Extensive delignfication required oxidative treatment and additional lime consumption. Deacetylation quickly reached a plateau within 1 week. Delignification highly depended on temperature and the presence of oxygen. Lignin and hemicellulose were selectively removed, but cellulose was not affected by lime pretreatment in mild temperatures (25 ?? 55oC). The delignification kinetic models of corn stover were empirically determined by three simultaneous first-order reactions. The activation energies for the oxidative delignification were estimated as 50.15 and 54.21 kJ/mol in the bulk and residual phases, respectively. Crystallinity slightly increased with delignification because amorphous components (lignin, hemicellulose) were removed. However, the increased crystallinity did not negatively affect the 3-d sugar yield of enzyme hydrolysis. Oxidative lime pretreatment lowered the acetyl and lignin contents to obtain high digestibility, regardless of crystallinity. The enzymatic digestibility of lime-treated biomass was affected by the change of structural features (acetylation, lignification, and crystallization) resulting from the treatment. The non-linear models for 3-d hydrolysis yields of glucan and xylan were empirically established as a function of the residual lignin fraction for the corn stover pretreated with lime and air.
|
15 |
Enhancement of Anaerobic Digestion of Organic Fraction of Municipal Solid Waste by Microwave PretreatmentShahriari Zavareh, Haleh 03 October 2011 (has links)
This study evaluates the enhancement of anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) by microwave pretreatment (MW) at high temperatures (115, 145 and 175°C). The highest level of solubilization was achieved at 175ºC, with a supplemental water addition of 30% (SWA30). Pretreatments combining two modalities; MW heating in presence or absence of hydrogen peroxide (H2O2) was also investigated. Biochemical methane potential (BMP) tests were conducted on the whole OFMSW, as well as on the liquid fractions.
The whole OFMSW pretreated at 115 and 145 ºC showed little improvement in biogas production over control. When pretreated at 175 ºC, biogas production decreased due to formation of refractory compounds, inhibiting digestion. For the liquid fraction of OFMSW, the effect of pretreatment on the cumulative biogas production (CBP) was more pronounced for supplemental water addition of 20% (SWA20) at 145 ºC. Combining MW and H2O2 modalities did not have a positive impact on OFMSW stabilization and enhanced biogas production.
Based on the BMP assay results, the effects of MW pretreatment (145 ºC) on the AD of OFMSW (SWA20) were further evaluated in single and dual stage semi-continuous digesters at hydraulic retention times (HRTs) of 20, 15, 12 and 9 days. Overall, MW pretreatment did not enhance the AD of the whole waste at the HRTs tested. However, the use of a dual stage reactor digesting non pretreated whole OFMSW had the best performance with the shortest HRT of 9 days. Conversely, for free liquid after pretreatment in two stage reactors at 20 day HRT methane production was tripled. In general, the performance of the dual stage digesters surpassed that of the single stage reactors.
Cyclic BMP assays indicated that using an appropriate fraction of recycled effluent leachate can be implemented without negatively effecting methanogenic activity and biogas production.
Based on the results obtained in this study, digestion of OFMSW by dual stage reactors without pretreatment appears to provide the best potential for waste stabilization in terms of biogas production and yield, process stability and volumetric loading rates.
|
16 |
Application of Microwaves and Thermophilic Anaerobic Digestion to Wastewater Sludge TreatmentGabriel Coelho, Nuno Miguel 24 April 2012 (has links)
Anaerobic digestion of waste activated sludge can be improved if hydrolysis of particulate substrates is enhanced and available substrate is made more accessible by both breakup of the sludge matrix floc and rupture of the cell wall. Microwave (MW) pretreatment was suggested and studied as a way to improve digestion efficiency. The work done focuses on the effects of MW pretreatment on the characteristics of the sludge, due to thermal and athermal effects. It also evaluates the effects some process variables in the activated sludge process have on the pretreatment efficiency as well as the effect operating conditions in the downstream anaerobic digestion process have on the biodegradability efficiency of those sludges.
Effects of athermal and thermal MW radiation were measured by use of a customized MW oven capable of providing MW radiation with uncoupled thermal and athermal effects. Athermal radiation was capable of increasing substrate present in the soluble phase of sludge, and had a positive effect in the digestion of athermal samples. The increases in biogas production and substrate solubilisation were smaller in magnitude than the increases measured for MW thermal tests. Further refining of the tests with athermal and thermal sludge, involved separation by size class of the solubilized substrate by means of ultrafiltration (UF), and revealed that changes in particle size distribution were significant not only for MW thermal tests, but also for athermal tests, with a particular emphasis in proteins in athermal tests. These changes had an effect on the biodegradability of the sludges by class size, with thermally pretreated sludge producing more biogas for smaller particles size classes but also exhibiting more inhibition.
Tests were made with several combinations of sludge with different ages and subject to different MW pretreatment temperatures. The work showed that sludge age or solids retention time (SRT) has a significant effect on the pretreatment efficiency with maximum biogas improvements measured at different MW pretreatment temperatures depending on the SRT of the sludge tested, and with different behaviour for mesophilic and thermophilic digestion. Mesophilic tests showed greater improvements in terms of digestion effiency on average, but thermophilic tests showed more uniform performance, with a higher baseline efficiency. The presence of an optimum of MW pretreatment temperature and sludge SRT for maximal biogas production is more defined for mesophilic conditions than for thermophilic conditions.
Semi-continuous studies were conducted with several combinations of single and two stage mesophilic and thermophilic digestors treating MW pretreated sludge and non-pretreated sludge. Staging and thermophilic digestion allowed the maintenance of a stable digestion process with high biogas productions and high solids removal efficiencies with production of sludge with good bacteriological characteristics for an very low residence time (5 d).
|
17 |
Enhancement of Anaerobic Digestion of Organic Fraction of Municipal Solid Waste by Microwave PretreatmentShahriari Zavareh, Haleh 03 October 2011 (has links)
This study evaluates the enhancement of anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) by microwave pretreatment (MW) at high temperatures (115, 145 and 175°C). The highest level of solubilization was achieved at 175ºC, with a supplemental water addition of 30% (SWA30). Pretreatments combining two modalities; MW heating in presence or absence of hydrogen peroxide (H2O2) was also investigated. Biochemical methane potential (BMP) tests were conducted on the whole OFMSW, as well as on the liquid fractions.
The whole OFMSW pretreated at 115 and 145 ºC showed little improvement in biogas production over control. When pretreated at 175 ºC, biogas production decreased due to formation of refractory compounds, inhibiting digestion. For the liquid fraction of OFMSW, the effect of pretreatment on the cumulative biogas production (CBP) was more pronounced for supplemental water addition of 20% (SWA20) at 145 ºC. Combining MW and H2O2 modalities did not have a positive impact on OFMSW stabilization and enhanced biogas production.
Based on the BMP assay results, the effects of MW pretreatment (145 ºC) on the AD of OFMSW (SWA20) were further evaluated in single and dual stage semi-continuous digesters at hydraulic retention times (HRTs) of 20, 15, 12 and 9 days. Overall, MW pretreatment did not enhance the AD of the whole waste at the HRTs tested. However, the use of a dual stage reactor digesting non pretreated whole OFMSW had the best performance with the shortest HRT of 9 days. Conversely, for free liquid after pretreatment in two stage reactors at 20 day HRT methane production was tripled. In general, the performance of the dual stage digesters surpassed that of the single stage reactors.
Cyclic BMP assays indicated that using an appropriate fraction of recycled effluent leachate can be implemented without negatively effecting methanogenic activity and biogas production.
Based on the results obtained in this study, digestion of OFMSW by dual stage reactors without pretreatment appears to provide the best potential for waste stabilization in terms of biogas production and yield, process stability and volumetric loading rates.
|
18 |
Modeling and Optimization of a Bioethanol Production FacilityGabriel, Kerron Jude 2011 August 1900 (has links)
The primary objective of this work is to identify the optimal bioethanol production plant capacity and configuration based on currently available technology for all the processing sections involved. To effect this study, a systematic method is utilized which involves the development of a superstructure for the overall technology selection, process simulation and model regression of each processing step as well as equipment costing and overall economic evaluation. The developed optimization model is also designed to incorporate various biomass feedstocks as well as realistic maximum equipment sizing thereby ensuring pragmatism of the work. For this study, the criterion for optimization is minimum ethanol price.
The secondary and more interesting aim of this work was to develop a systematic method for evaluating the economics of biomass storage due to seasonal availabilities. In essence, a mathematical model was developed to link seasonal availabilities with plant capacity with subsequent integration into the original model developed. Similarly, the criterion for optimization is minimum ethanol price.
The results of this work reveal that the optimal bioethanol production plant capacity is ~2800 MT biomass/day utilizing Ammonia Fiber Explosion pretreatment technology and corn stover as the preferred biomass feedstock. This configuration provides a minimum ethanol price of $1.96/gal. Results also show that this optimal pretreatment choice has a relatively high sensitivity to chemical cost thereby increasing the risk of implementation. Secondary to this optimal selection was lime pretreatment using switchgrass which showed a fairly stable sensitivity to market chemical cost.
For the storage economics evaluation, results indicated that biomass storage is not economical beyond a plant capacity of ~98 MMgal/yr with an average biomass shortage period of 3 months. The study also showed that for storage to be economical at all plant capacities, the storage scheme employed should be general open air land use with a corresponding biomass loss rate as defined in the study of 0.5 percent per month.
|
19 |
De-oiling and Pre-treatments for High-Quality Potato ChipsKim, Tae Hoon 2010 December 1900 (has links)
A de-oiling step using a centrifuge ensures oil content reduction and improves the quality of fried snacks. A commercial deep-fat fryer with the basket loaded with potatoes and a sample holder was used to fry potato slices, non-pretreated, blanched in hot water (85°C/3.5min) and rinsed in 3 percent NaCl solution (25°C/5min). A de-oiling step (350 1 rpm and 457 1 rpm) for 1 min was conducted after the frying (145°, 165° and 185°C or 165°C) and cooling (0, 15, 30, 45 and 60 s or 0.60 and 120 s) steps.
Lower frying temperature, higher centrifuge speed, and shorter cooling time resulted in the lowest oil uptake in potato chips. Pre-treatments (blanching and soaking) decreased (5 percent and by at least 10 percent), respectively, compared to the untreated chips.
De-oiling led to increased hardness of the chips fried at 145° and 165°C (0 s cooling time), and the hardness decreased as cooling time. Pre-treatments (blanching and soaking) increased hardness (by 46 percent and 38 percent) and decreased work (by 20 percent and 27 percent), respectively, so that, during rupture, the pre-treated chips resulted in more crunchiness and firmness than the untreated chips.
Potato chips showed less lightness and redness when fried at 145°C, and more lightness and redness when fried at 185°C; yellowness increased b* values as temperature increased. As cooling time increased, the lightness of the chips decreased, and the redness and the yellowness of the chips increased. Pre-treated samples resulted in increasing in lightness (L*) and yellowness (b*), whereas the redness (a*) values of the final products fluctuated.
Higher frying temperature, centrifuge speed, and higher cooling time usually resulted in increasing shrinkage in thickness of potato chips; the chips fried at 165°C resulted in increasing in thickness. All the fried and de-oiled products resulted in a decrease in thickness, diameter, and volume except for the thickness of the chip soaked in NaCl, compared to raw slices.
A consumer test showed that, blanching and de-oiling without cooling enhanced texture and overall quality of the chip, soaking and de-oiling improved the color, flavor, and the overall quality, and the two pre-treatments did not significantly influence the odor of the chip.
|
20 |
Kinetic Modeling and Assessment of Lime Pretreatment of Poplar WoodSierra Ramirez, Rocio 2010 December 1900 (has links)
Because of widespread availability, low cost, sustainability, and potential supply
far greater than that of food crops, lignocellulosic biomass is one of the most promising
feedstocks for producing biofuels through fermentation processes. Among lignocellulose
choices, poplar wood is appealing because of high energy potential, above-average
carbon mitigation potential, fast growth, and high yields. Lignocellulose structural
features limit accessibility of enzymes or microorganisms. To overcome these
limitations, pretreatment is required. Among several choices of pretreatment, lime
pretreatment is preferred because lime is the cheapest alkali, safest to handle, easy to
recover, and compatible with oxidants.
The main effect of lime pretreatment is to degrade lignin, which occurs with
good carbohydrate preservation and is enhanced with oxidants. Among several choices
of oxidant, oxygen and air are preferred because of low cost and widespread availability.
This study systematically assesses the effects of lime pretreatment on poplar
wood using four different modes: long-term oxidative, long-term non-oxidative, short-term
constant pressure, and short-term varying pressure. Long-term pretreatments use
temperatures between 25 and 65° C, air if oxidant is used, and last several weeks. Short-term
pretreatments use temperatures between 110 and 180° C, pressurized oxygen, and
last several minutes to hours.
Pretreatment was assessed on the basis of 3-day enzymatic digestibility using
enzyme loadings of 15 FPU/g glucan in raw biomass. The results were used to
recommend pretreatment conditions based on highest overall yield of glucan (after
combined pretreatment and enzymatic hydrolysis) for each pretreatment mode.
For each pretreatment mode, kinetic models for delignification and carbohydrates
degradation were obtained and used to determine the conditions (temperature, pressure,
and time) that maximize glucan preservation subjected to a target lignin yield. This study
led to conclude that the most robust, and selective mode of lime pretreatment is varying
pressure.
|
Page generated in 0.0642 seconds