• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 257
  • 119
  • 60
  • 57
  • 30
  • 23
  • 16
  • 15
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • Tagged with
  • 690
  • 690
  • 176
  • 154
  • 133
  • 113
  • 103
  • 100
  • 100
  • 88
  • 85
  • 83
  • 82
  • 73
  • 65
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Provision Quality-of-Service Controlled Content Distribution in Vehicular Ad Hoc Networks

Luan, Hao 23 August 2012 (has links)
By equipping vehicles with the on-board wireless facility, the newly emerged vehicular networking targets to provision the broadband serves to vehicles. As such, a variety of novel and exciting applications can be provided to vehicular users to enhance their road safety and travel comfort, and finally raise a complete change to their on-road life. As the content distribution and media/video streaming, such as Youtube, Netflix, nowadays have become the most popular Internet applications, to enable the efficient content distribution and audio/video streaming services is thus of the paramount importance to the success of the vehicular networking. This, however, is fraught with fundamental challenges due to the distinguished natures of vehicular networking. On one hand, the vehicular communication is challenged by the spotty and volatile wireless connections caused by the high mobility of vehicles. This makes the download performance of connections very unstable and dramatically change over time, which directly threats to the on-top media applications. On the other hand, a vehicular network typically involves an extremely large-scale node population (e.g., hundreds or thousandths of vehicles in a region) with intense spatial and temporal variations across the network geometry at different times. This dictates any designs to be scalable and fully distributed which should not only be resilient to the network dynamics, but also provide the guaranteed quality-of-service (QoS) to users. The purpose of this dissertation is to address the challenges of the vehicular networking imposed by its intrinsic dynamic and large-scale natures, and build the efficient, scalable and, more importantly, practical systems to enable the cost-effective and QoS guaranteed content distribution and media streaming services to vehicular users. Note that to effective- ly deliver the content from the remote Internet to in-motion vehicles, it typically involves three parts as: 1.) an infrastructure grid of gateways which behave as the data depots or injection points of Internet contents and services to vehicles, 2.) protocol at gateways which schedules the bandwidth resource at gateways and coordinates the parallel transmissions to different vehicles, and 3.) the end-system control mechanism at receivers which adapts the receiver’s content download/playback strategy based on the available network throughput to provide users with the desired service experience. With above three parts in mind, the entire research work in this dissertation casts a systematic view to address each part in one topic with: 1.) design of large-scale cost-effective content distribution infrastructure, 2.) MAC (media access control) performance evaluation and channel time scheduling, and 3.) receiver adaptation and adaptive playout in dynamic download environment. In specific, in the first topic, we propose a practical solution to form a large-scale and cost-effective content distribution infrastructure in the city. We argue that a large-scale infrastructure with the dedicated resources, including storage, computing and communication capacity, is necessary for the vehicular network to become an alternative of 3G/4G cellular network as the dominating approach of ubiquitous content distribution and data services to vehicles. On addressing this issue, we propose a fully distributed scheme to form a large-scale infrastructure by the contributions of individual entities in the city, such as grocery stores, movie theaters, etc. That is to say, the installation and maintenance costs are shared by many individuals. In this topic, we explain the design rationale on how to motivate individuals to contribute, and specify the detailed design of the system, which is embodied with distributed protocols and performance evaluation. The second topic investigates on the MAC throughput performance of the vehicle-to- infrastructure (V2I) communications when vehicles drive through RSUs, namely drive-thru Internet. Note that with a large-scale population of fast-motion nodes contending the chan- nel for transmissions, the MAC performance determines the achievable nodal throughput and is crucial to the on-top applications. In this topic, using a simple yet accurate Marko- vian model, we first show the impacts of mobility (characterized by node velocity and moving directions) on the nodal and system throughput performance, respectively. Based on this analysis, we then propose three enhancement schemes to timely adjust the MAC parameters in tune with the vehicle mobility to achieve the maximal the system throughput. The last topic investigates on the end-system design to deliver the user desired media streaming services in the vehicular environment. In specific, the vehicular communications are notoriously known for the intermittent connectivity and dramatically varying throughput. Video streaming on top of vehicular networks therefore inevitably suffers from the severe network dynamics, resulting in the frequent jerkiness or even freezing video playback. To address this issue, an analytical model is first developed to unveil the impacts of network dynamics on the resultant video performance to users in terms of video start-up delay and smoothness of playback. Based on the analysis, the adaptive playout buffer mechanism is developed to adapt the video playback strategy at receivers towards the user-defined video quality. The proposals developed in the three topics are validated with the extensive and high fidelity simulations. We believe that our analysis developed in the dissertation can provide insightful lights on understanding the fundamental performance of the vehicular content distribution networks from the aspects of session-level download performance in urban vehicular networks (topic 1), MAC throughput performance (topic 2), and user perceived media quality (topic 3). The protocols developed in the three topics, respectively, offer practical and efficient solutions to build and optimize the vehicular content distribution networks.
152

CSMA with Implicit Scheduling through State-keeping: A Distributed MAC Framework for QoS in Broadcast LANs

Kangude, Shantanu 13 May 2004 (has links)
Channel access fairness and efficiency in capacity utilization are the two main objectives for Quality of Service (QoS) specific to Medium Access Control (MAC) protocols in computer networks. For bursty and unpredictable traffic in networks, fairness and efficiency involve a mutual tradeoff with the currently popular QoS mechanisms. We propose a QoS MAC framework for carrier sensing multiple access (CSMA) networks, that achieves fairness with improved efficiency through extensive state-keeping based on the MAC evolution. This CSMA with Implicit Scheduling through State-keeping (CSMA/ISS) framework involves the tracking of traffic arrival at active nodes, the nodes that need channel access frequently. It also involves implicit channel access grants to different active nodes according to their estimated queue backlogs and the fair scheduling requirements. These methods save channel capacity that may otherwise be required for disseminating the access requirements of various nodes, and their access rights according to fairness rules. A static, hierarchical, and weighted fair access scheme is designed in CSMA/ISS by allowing repeated rounds of access that are weighted fairly according to requirements. Weighted fairness across classes is achieved by invoking channel access for each traffic class in a round as many times as its weight. Within each class, all active nodes are allowed equal access through in-order channel access based on a looped list of active nodes. Although CSMA/ISS is proposed as a distributed control framework for efficiency, it may also be employed in central control protocols. It may also be adapted to different types of CSMA networks, both wireless and wired, by an appropriate choice of the underlying classical access mechanism. The CSMA/ISS framework was modeled and simulated as a QoS capable MAC protocol for a wired fully connected local network environment. We present the CSMA/ISS framework, the example implementation, and the results of performance evaluation of the example implementation. Significant performance improvements were observed, and the memory and processing trade-off was found to be low to moderate.
153

QoS-Aware Packet Scheduler for LTE Downlink Based on Packet Prediction Mechanism

Tang, Chang-Lung 09 August 2011 (has links)
none
154

Quality of service analysis for hybrid-ARQ

Gunaseelan, Nirmal K. 15 May 2009 (has links)
Data intensive applications, requiring reliability and strict delay constraints, have emerged recently and they necessitate a different approach to analyzing system performance. In my work, I establish a framework that relates physical channel parameters to the queueing performance for a single-user wireless system. I then seek to assess the potential benefits of multirate techniques, such as hybrid-ARQ (Automatic Repeat reQuest), in the context of delay-sensitive communications. Present methods of analysis in an information theoretic paradigm define capacity assuming that long codewords can be used to take advantage of the ergodic properties of the fading wireless channel. This definition provides only a limited characterization of the channel in the light of delay constraints. The assumption of independent and identically distributed channel realizations tends to over-estimate the system performance by not considering the inherent time correlation. A finite-state continuous time Markov channel model that I formulate enables me to partition the instantaneous data-rate received at the destination into a finite number of states, representing layers in a hybrid-ARQ scheme. The correlation of channel has been incorporated through level crossing rates as transition rates in the Markov model. The large deviation principle governing the buffer overflow of the Markov model, is very sensitive to channel memory, is tractable, and gives a good estimate of the system performance. Metrics such as effective capacity and probability of buffer overflow, that are obtained through large deviations have been related to the wireless physical layer parameters through the model. Using the above metrics under QoS constraints, I establish the quantitative performance advantage of using hybrid-ARQ over traditional systems. I conduct this inquiry by restricting attention to the case where the expected transmit power is fixed at the transmitter. The results show that hybrid-ARQ helps us in obtaining higher effective capacity, but it is very difficult to support delay sensitive communication over wireless channel in the absence of channel knowledge and dynamic power allocation strategies.
155

Improving Efficiency and Effectiveness of Multipath Routing in Computer Networks

Lee, Yong Oh 2012 May 1900 (has links)
In this dissertation, we studied methods for improving efficiency and effectiveness of multipath routing in computer networks. We showed that multipath routing can improve network performance for failure recovery, load balancing, Quality of Service (QoS), and energy consumption. We presented a method for reducing the overhead of computing dynamic path metrics, one of the obstacles for implementing dynamic multipath routing in real world networks. In the first part, we proposed a method for building disjoint multipaths that could be used for local failure recovery as well as for multipath routing. Proactive failure recovery schemes have been recently proposed for continuous service of delay-sensitive applications during failure transients at the cost of extra infrastructural support in the form of routing table entries, extra addresses, etc. These extra infrastructure supports could be exploited to build alternative disjoint paths in those frameworks, while keeping the lengths of the alternative paths close to those of the primary paths. The evaluations showed that it was possible to extend the proactive failure recovery schemes to provide support for nearly-disjoint paths which could be employed in multipath routing for load balancing and QoS. In the second part, we proposed a method for reducing overhead of measuring dynamic link state information for multipath routing, specifically path delays used in Wardrop routing. Even when dynamic routing could be shown to offer convergence properties without oscillations, it has not been widely adopted. One of reasons was that the expected cost of keeping the link metrics updated at various nodes in the network. We proposed threshold-based updates to propagate the link state only when the currently measured link state differs from the last updated state consider- ably. Threshold-based updates were shown through analysis and simulations to offer bounded guarantees on path quality while significantly reducing the cost of propagating the dynamic link metric information. The simulation studies indicated that threshold based updates can reduce the number of link updates by up to 90-95% in some cases. In the third part, we proposed methods of using multipath routing for reducing energy consumption in computer networks. Two different approaches have been advocated earlier, from traffic engineering and topology control to hardware-based approaches. We proposed solutions at two different time scales. On a finer time granularity, we employed a method of forwarding through alternate paths to enable longer sleep schedules of links. The proposed schemes achieved more energy saving by increasing the usage of active links and the down time of sleeping links as well as avoiding too frequent link state changes. To the best of our knowledge, this was the first technique combining a routing scheme with hardware scheme to save energy consumption in networks. In our evaluation, alternative forwarding reduced energy consumption by 10% on top of a hardware-based sleeping scheme. On a longer time granularity, we proposed a technique that combined multipath routing with topology control. The proposed scheme achieved increased energy savings by maximizing the link utilization on a reduced topology where the number of active nodes and links are minimized. The proposed technique reduced energy consumption by an additional 17% over previous schemes with single/shortest path routing.
156

Multimedia Scheduling in Bandwidth Limited Networks

Sun, Huey-Min 27 April 2004 (has links)
We propose an object-based multimedia model for specifying the QoS (quality of service) requirements, such as the maximum data-dropping rate or the maximum data-delay rate. We also present a resource allocation model, called the net-profit model, in which the satisfaction of user¡¦s QoS requirements is measured by the benefit earned by the system. Based on the net-profit model, the system is rewarded if it can allocate enough resources to a multimedia delivery request and fulfill the QoS requirements specified by the user. At the same time, the system is penalized if it cannot allocate enough resources to a multimedia delivery request. In this dissertation, we present our research in developing optimal solutions for multimedia stream delivery in bandwidth limited networks. To fulfill the QoS requirements, the resource, such as bandwidth, should be reserved in advance. Hence, we first investigate how to allocate a resource such that the QoS satisfaction is maximized, assuming that the QoS requirements are given a priori. The proposed optimal solution has significant improvement over the based line algorithm, EDF (Earliest Deadline First). Among all the optimal solutions found from the above problem, the net-profit may be distributed unevenly among the multimedia delivery requests. Furthermore, we tackle the fairness problem -- how to allocate a resource efficiently so that the difference of the net-profit between two requests is minimized over all the possible optimal solutions of the maximum total net-profit. A dynamic programming based algorithm is proposed to find all the possible optimal solutions and, in addition, three filters are conducted to improve the efficiency of the proposed algorithm. The experimental results show that the filters prune out unnecessary searches and improve the performance significantly, especially when the number of tasks increases. For some multimedia objects, they might need to be delivered in whole, indivisible, so we extend the proposed multimedia object-based model to indivisible objects. A dynamic programming based algorithm is presented to find an optimal solution of the delivery problem, where the total net-profit is maximized.
157

Tiered Bandwidth Reservation Scheme for Multimedia Sectorized Wireless Networks

Sun, Yu-hang 13 July 2004 (has links)
Because there has been a rapid development in wireless networks, it is important to provide quality-of-service (QoS) guarantees as they are expected to support multimedia applications. In this paper we propose a new bandwidth reservation scheme based on the characteristic of the cell equipped with sector antenna and 2-tier cell structure. According to this information, the proposed scheme can predict the next location of each connection and precisely reserve bandwidth in appropriate neighboring cells, not all of its neighboring cells. In addition, the proposed scheme incorporates bandwidth borrowing mechanism into call admission control strategy. The combination of bandwidth reservation and bandwidth borrowing provides network users with QoS in terms of guaranteed bandwidth, call blocking and call dropping probabilities.
158

Text Mining: A Burgeoning Quality Improvement Tool

J. Mohammad, Mohammad Alkin Cihad 01 November 2007 (has links) (PDF)
While the amount of textual data available to us is constantly increasing, managing the texts by human effort is clearly inadequate for the volume and complexity of the information involved. Consequently, requirement for automated extraction of useful knowledge from huge amounts of textual data to assist human analysis is apparent. Text mining (TM) is mostly an automated technique that aims to discover knowledge from textual data. In this thesis, the notion of text mining, its techniques, applications are presented. In particular, the study provides the definition and overview of concepts in text categorization. This would include document representation models, weighting schemes, feature selection methods, feature extraction, performance measure and machine learning techniques. The thesis details the functionality of text mining as a quality improvement tool. It carries out an extensive survey of text mining applications within service sector and manufacturing industry. It presents two broad experimental studies tackling the potential use of text mining for the hotel industry (the comment card analysis), and in automobile manufacturer (miles per gallon analysis). Keywords: Text Mining, Text Categorization, Quality Improvement, Service Sector, Manufacturing Industry.
159

Design And Implementation Of Scheduling And Switching Architectures For High Speed Networks

Sanli, Mustafa 01 October 2011 (has links) (PDF)
Quality of Service (QoS) schedulers are one of the most important components for the end-to-end QoS support in the Internet. The focus of this thesis is the hardware design and implementation of the QoS schedulers, that is scalable for high line speeds and large number of traffic flows. FPGA is the selected hardware platform. Previous work on the hardware design and implementation of QoS schedulers are mostly algorithm specific. In this thesis, a general architecture for the design of the class of Packet Fair Queuing (PFQ) schedulers is proposed. Worst Case Fair Weighted Fair Queuing Plus (WF2Q+) scheduler is implemented and tested in hardware to demonstrate the proposed architecture and design enhancements. The maximum line speed that PFQ algorithms can operate decreases as the number of scheduled flows increases. For this reason, this thesis proposes to aggregate the flows to scale the PFQ architecture to high line speeds. The Window Based Fair Aggregator (WBFA) algorithm that this thesis suggests for flow aggregation provides a tunable trade-off between the efficient use of the available bandwidth and the fairness among the constituent flows. WBFA is also integrated to the hardware PFQ architecture. The QoS support provided by the proposed PFQ architecture and WBFA is measured by conducting hardware experiments on a custom built high speed network testbed which consists of three data processing cards and a backplane. In these experiments, the input traffic is provided by the hardware traffic generator which is designed in the scope of this thesis.
160

New Multicasting Architecture with QoS Support for Transmitting Multimedia Data in 3G Systems

Kang, Chi-Cheng 01 August 2001 (has links)
In the traditional mobile communication networks, the bandwidth of wireless links is too small and the bandwidth difference between wireless links and wireline links is too large. This leads to limiting the application of mobile communication networks to transmit multimedia data and other high-bit rate services, and the problem of lacking bandwidth often occurs to wireless links. But the new generation mobile communication networks, called the third generation mobile communication systems (3G systems), will change this condition. Because the 3G systems will quickly enhance the transmission rate of the wireless links (up to 2Mbps) and provide better quality of transmission, the transmission of multimedia data and other high-bit rate services in the mobile communication networks can be achieved. The 3G systems can support many new services that are never supported before, and these new services always need support the point-to-multipoint transmission. In this thesis, we will discuss the problems of supporting these new services, and then we propose new multimedia multicasting architecture to overcome these problems.

Page generated in 0.0714 seconds