Spelling suggestions: "subject:"[een] RECOMMENDER SYSTEMS"" "subject:"[enn] RECOMMENDER SYSTEMS""
1 |
StreamER: Evaluation Framework For Streaming Recommender SystemsKosaraju, Sai Sri January 2018 (has links)
Recommender systems have gained a lot of popularity in recent times dueto their application in the wide range of fields. Recommender systems areintended to support users in finding the relevant items based on their interestsand preferences. Recommender algorithms proposed by researchersevolved over time from simple matching recommendations to machine learningalgorithms. One such class of algorithms with increasing focus is oncalled streaming recommender systems, these algorithms treat input data asa stream of events and make recommendations. To evaluate the algorithmsthat work with continuous data streams, stream-based evaluation techniquesare needed. So far, less interest is shown in the research so far on the evaluationof recommender systems in streaming environments.In this thesis, a simple evaluation framework named StreamER that evaluatesrecommender algorithms that work on streaming data is proposed.StreamER is intended for the rapid prototyping and evaluation of incrementalalgorithms. StreamER is designed and implemented using object-orientedarchitecture to make it more flexible and expandable. StreamER can beconfigured via a configuration file, which can configure algorithms, metricsand other properties individually. StreamER has inbuilt support for calculatingaccuracy metrics, namely click-through rate, precision, and recall.The popular-seller and random recommender are two algorithms supportedout of the box with StreamER. Evaluation of StreamER is performed via acombination of hypothesis and manual evaluation. Results have matched theproposed hypothesis, thereby successfully evaluating the proposed frameworkStreamER.
|
2 |
Predicting and using social tags to improve the accuracy and transparency of recommender systemsGivon, Sharon January 2011 (has links)
This thesis describes work on using content to improve recommendation systems. Personalised recommendations help potential buyers filter information and identify products that they might be interested in. Current recommender systems are based mainly on collaborative filtering (CF) methods, which suffer from two main problems: (1) the ramp-up problem, where items that do not have a sufficient amount of meta-data associated with them cannot be recommended; and (2) lack of transparency due to the fact that recommendations produced by the system are not clearly explained. In this thesis we tackle both of these problems. We outline a framework for generating more accurate recommendations that are based solely on available textual content or in combination with rating information. In particular, we show how content in the form of social tags can help improve recommendations in the book and movie domains. We address the ramp-up problem and show how in cases where they do not exist, social tags can be automatically predicted from available textual content, such as the full texts of books. We evaluate our methods using two sets of data that differ in product type and size. Finally we show how once products are selected to be recommended, social tags can be used to explain the recommendations. We conduct a web-based study to evaluate different styles of explanations and demonstrate how tag-based explanations outperform a common CF-based explanation and how a textual review-like explanation yields the best results in helping users predict how much they will like the recommended items.
|
3 |
Essays on Consumer Switching and Search BehaviorHan, Qiwei 01 May 2017 (has links)
As recommender systems have increasingly become prevalent to guide consumers to find their desired products in many industries, understanding the impact of recommender systems on consumer choices is critical to the business performance and raises important policy implications. In this thesis, we examine the role of different recommendation schemes, spanning from interpersonal recommendations in social environment given by peers to product display recommendations in physical shopping environment given by sellers on consumers’ switching and search behavior in two distinct case studies. In the first study, we look at the effect of peer recommendations on subscriber churn in a large mobile network. We find that consumers’ propensity to churn increases with the number of friends that churn and in particular with the number of strong friends that churn. In the second study, we implement an in-vivo randomized field experiment to measure the effect of product display recommendations as book placement on shopper behavior in a physical bookstore. We leverage video tracking technologies to monitor how shoppers respond to random book placement, which induces random search costs. We find that books recommended at the edge of the table are more likely to be picked and taken than those placed at the center of the table. More interestingly, we also find that conditional on being picked, shoppers are equally likely to take books placed at the edge and at the center of the table, suggesting that display recommendations positively affect consumer choice mainly through its effect on the search process and not through its effect on the consideration process. Therefore, we empirically show that provision of recommendations, although in different schemes, may generally help to reduce consumers’ search costs in product or service discovery process, relative to what they would do without such an intervention. Moreover, we perform a comparative analysis between offline and online applications of recommender systems to systematically investigate the current practices, future prospects and policy perspectives when applying recommender systems in physical retailing. All these issues highlight opportunities for physical retailers to design, implement and evaluate their recommender systems that offer convenience benefits and appropriate protection to consumers.
|
4 |
Effective fusion-based approaches for recommender systems. / 推薦系統的有效融合方法 / CUHK electronic theses & dissertations collection / Tui jian xi tong de you xiao rong he fang faJanuary 2011 (has links)
(1) Relational fusion of multiple features for the classical regression task (single measure and dimension). Originally, the task of recommender systems is formulated as a regression task. Many CF algorithms and fusion methods have been proposed. The limitation of previous fusion methods is that only local features are utilized and the global relational dependency is ignored, which would impair the performance of CF. We propose a relational fusion approach based on conditional random fields (CRF) to improve traditional fusion methods by incorporating global relational dependency. / (2) Fusion of regression-oriented and ranking-oriented algorithms for multi-measure adaption. Beyond the level of classical regression, ranking the items directly is another important task for recommender systems. A good algorithm should adapt to both regression-oriented and ranking-oriented measures. Traditionally, algorithms separately adapt to a single one, thus they cannot adapt to the other. We propose methods to combine them to improve the performances in both measures. / (3) Fusion of quality-based and relevance-based algorithms for multi-dimensional adaption. Recommender systems should consider the performances of multiple dimensions, such as quality and relevance. Traditional algorithms, however, only recommend either high-quality or high-relevance items. But they cannot adapt to the other dimension. We propose both fusion metrics and fusion approaches to effectively combine multiple dimensions for better performance in multi-dimensional recommendations. / (4) Investigation of impression efficiency optimization in recommendation. Besides performance, impression efficiency, which describes how much profit can be obtained per impression of recommendation, is also a very important issue. From recent study, over-quantity recommendation impression is intrusive to users. Thus the impression efficiency should be formulated and optimized. But this issue has rarely been investigated. We formulate the issue under the classical secretary problem framework and extend an online secretary algorithm to solve it. / Recommender systems are important nowadays. With the explosive growth of resources on the Web, users encounter information overload problem. The research issue of recommender systems is a kind of information filtering technique that suggests user-interested items (e.g., movies, books, products, etc.) to solve this problem. Collaborative filtering (CF) is the key approach. Over the decades, recommender systems have been demonstrated important in E-business. Thus designing accurate algorithms for recommender systems has attracted much attention. / This thesis is to investigate effective fusion-based approaches for recommender systems. Effective fusion of various features and algorithms becomes important along with the development of recommendation techniques. Because each feature/algorithm has its own advantages and disadvantages. A combination to get the best performance is desired in applications. The fusion-based approaches investigated are from the following four levels. / Xin, Xin. / Advisers: Wai Lam; Irwin Kuo Chin King; Michael Rung Tsong Lyu. / Source: Dissertation Abstracts International, Volume: 73-06, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 152-172). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
5 |
Faster Training of Neural Networks for Recommender SystemsKogel, Wendy E. 01 May 2002 (has links)
In this project we investigate the use of artificial neural networks(ANNs) as the core prediction function of a recommender system. In the past, research concerned with recommender systems that use ANNs have mainly concentrated on using collaborative-based information. We look at the effects of adding content-based information and how altering the topology of the network itself affects the accuracy of the recommendations generated. In particular, we investigate a mixture of experts topology. We create two expert clusters in the hidden layer of the ANN, one for content-based data and another for collaborative-based data. This greatly reduces the number of connections between the input and hidden layers. Our experimental evaluation shows that this new architecture produces the same accuracy of recommendation as the fully connected configuration with a large decrease in the amount of time it takes to train the network. This decrease in time is a great advantage because of the need for recommender systems to provide real time results to the user.
|
6 |
Recommender systems based on online social networks : an Implicit Social Trust And Sentiment analysis approachAlahmadi, Dimah January 2017 (has links)
Recommender systems (RSs) provide personalised suggestions of information or products relevant to user's needs. RSs are considered as powerful tools that help users to find interesting items matching their own taste. Although RSs have made substantial progress in theory and algorithm development and have achieved many commercial successes, how to utilise the widely available information on Online Social Networks (OSNs) has largely been overlooked. Noticing this gap in existing research on RSs and taking into account a user's selection being greatly influenced by his/her trusted friends and their opinions, this thesis proposes a novel personalised Recommender System framework, so-called Implicit Social Trust and Sentiment (ISTS) based RSs. The main motivation was to overcome the overlooked use of OSNs in Recommender Systems and to utilise the widely available information from such networks. This work also designs solutions to a number of challenges inherent to the RSs domain, such as accuracy, cold-start, diversity and coverage. ISTS improves the existing recommendation approaches by exploring a new source of data from friends' short posts in microbloggings. In the case of new users who have no previous preferences, ISTS maps the suggested recommendations into numerical rating scales by applying the three main components. The first component is measuring the implicit trust between friends based on their intercommunication activities and behaviour. Owing to the need to adapt friends' opinions, the implicit social trust model is designed to include the trusted friends and give them the highest weight of contribution in recommendation encounter. The second component is inferring the sentiment rating to reflect the knowledge behind friends' short posts, so-called micro-reviews. The sentiment behind micro-reviews is extracted using Sentiment Analysis (SA) techniques. To achieve the best sentiment representation, our approach considers the special natural environment in OSNs brief posts. Two Sentiment Analysis methodologies are used: a bag of words method and a probabilistic method. The third ISTS component is identifying the impact degree of friends' sentiments and their level of trust by using machine learning algorithms. Two types of machine learning algorithms are used: classification models and regressions models. The classification models include Naive Bayes, Logistic Regression and Decision Trees. Among the three classification models, Decision Trees show the best Mean absolute error (MAE) at 0.836. Support Vector Regression performed the best among all models at 0.45 of MAE. This thesis also proposes an approach with further improvement over ISTS, namely Hybrid Implicit Social Trust and Sentiment (H-ISTS). The enhanced approach applies improvements by optimising trust parameters to identify the impact of the features (re-tweets and followings/followers list) on recommendation results. Unlike the ISTS which allocates equal weight to trust features, H-ISTS provides different weights to determine the different effects of the two trust features. As a result, we found that H-ISTS improved the MAE to be 0.42 which is based on Support Vector Regression. Further, it increases the number of trust features from two to five features in order to include the influence of these features in rating predictions. The integration of the new approach H-ISTS with a Collaborative Filtering recommender system, in particular memory-based, is investigated next. Therefore, existing users with a history of ratings can receive recommendations by fusing their own tastes and their friends' preferences using the two type of memory-based methods: user-based and item-based. H-ISTSitem is the integration of H-ISTS and item-based which provides the lowest error at 0.7091. The experiments show that diversity is better achieved using the H-ISTSuser which is the integration of H-ISTS and user-based technique. To evaluate the performance of these approaches, two real social datasets are collected from Twitter. To verify the proposed framework, the experiments are conducted and the results are compared against the most relevant baselines which confirmed that RSs have been successfully improved using OSNs. These enhancements demonstrate the effectiveness and promises of the proposed approach in RSs.
|
7 |
Inferring users' multi-attribute preferences from the reviews for augmenting recommender systems in e-commerceWang, Feng 01 January 2016 (has links)
By now, people are accustomed to getting some personalized recommendations when they are finding movies to watch, music to listen, and so on. All of these recommendations come from recommender systems, and can aid the process of the decision making to avoid the problem of "information overload". Over the years, there has been much work done both in industry and academia on developing new approaches for recommender systems. However, there are still some hurdles in adapting recommender systems to a broader range of real-life applications. In the e-commerce environment especially with the so called high-risk products (also called high-cost or high-involvement products, such as digital cameras, computers, and cars), because a user does not buy the high-risk product very often, it is normal that s/he is not able to rate many products. For the same reason, the current buyer is often a new user because s/he would not afford to buy the same kind of high-risk product before. The traditional recommender techniques (such as user-based collaborative filtering and content-based methods) can thus not be effectively applicable in this environment, because they largely assume that the users have prior experiences with products. Thus, the "data sparsity" and "new users" are two typical challenging issues that the classical recommender systems cannot well address in high-risk product domains. In some recommender systems, a new user will be asked to indicate his/her preferences on some aspects in order to address the so called cold-start problem via collecting some preferences. Such collected preferences are usually not complete due to unfamilaring with the product domain, which are called partial preferences.;In this thesis, we propose to leverage some auxiliary data of online reviewers' opinions, so as to enrich the partial preferences. With the objective of developing more effective recommender systems for high-risk products in e-commerce, in our work, we have exerted to derive reviewers' preferences from the textual reviews they posted. Then, these recovered preferences are leveraged to estimate and supplement a new buyer's preference with which the product recommendation is produced. Firstly, we propose a novel clustering method based on Latent Class Regression model (LCRM), which is able to consider both the overall ratings and feature-level opinion values (as extracted from textual reviews) to infer individual reviewers' weight feature preferences, that represent the weights the user places on different product features. Secondly, we propose a method to estimate reviewers' value preferences (i.e., the user's preferences on the product's attribute values) by matching their review opinions to the corresponding attributes' static specifications. Thirdly, we investigate how to combine weight preferences and value preferences to model user preferences based on Multi-Attribute Utility Theory (MAUT) with the purpose of providing higher quality product recommendations. Particularly, it was shown from our experimental studies that the incorporation of review information can significantly enhance the recommendation accuracy, relative to those without considering reviews. As the practical implication, our proposed solutions can be usefully plugged into an online system to be adopted in real-ecommerce sites.
|
8 |
Heterogeneous Graph Based Neural Network for Social Recommendations with Balanced Random Walk InitializationSalamat, Amirreza 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Research on social networks and understanding the interactions of the users can be modeled as a task of graph mining, such as predicting nodes and edges in networks. Dealing with such unstructured data in large social networks has been a challenge for researchers in several years. Neural Networks have recently proven very successful in performing predictions on number of speech, image, and text data and have become the de facto method when dealing with such data in a large volume. Graph NeuralNetworks, however, have only recently become mature enough to be used in real large-scale graph prediction tasks, and require proper structure and data modeling to be viable and successful. In this research, we provide a new modeling of the social network which captures the attributes of the nodes from various dimensions. We also introduce the Neural Network architecture that is required for optimally utilizing the new data structure. Finally, in order to provide a hot-start for our model, we initialize the weights of the neural network using a pre-trained graph embedding method. We have also developed a new graph embedding algorithm. We will first explain how previous graph embedding methods are not optimal for all types of graphs, and then provide a solution on how to combat those limitations and come up with a new graph embedding method.
|
9 |
Learning Top-N Recommender Systems with Implicit FeedbacksZhao, Feipeng January 2017 (has links)
Top-N recommender systems automatically recommend N items for users from huge amounts of products. Personalized Top-N recommender systems have great impact on many real world applications such as E-commerce platforms and social networks. Sometimes there is no rating information in user-item feedback matrix but only implicit purchase or browsing history, that means the user-item feedback matrix is a binary matrix, we call such feedbacks as implicit feedbacks. In our work we try to learn Top-N recommender systems with implicit feedbacks. First, we design a heterogeneous loss function to learn the model. Second, we incorporate item side information into recommender systems. We formulate a low-rank constraint minimization problem and give a closed-form solution for it. Third, we also use item side information to learn recommender systems. We use gradient descent method to learn our model. Most existing methods produce personalized top-N recommendations by minimizing a specific uniform loss such as pairwise ranking loss or pointwise recovery loss. In our first model, we propose a novel personalized Top-N recommendation approach that minimizes a combined heterogeneous loss based on linear self-recovery models. The heterogeneous loss integrates the strengths of both pairwise ranking loss and pointwise recovery loss to provide more informative recommendation predictions. We formulate the learning problem with heterogeneous loss as a constrained convex minimization problem and develop a projected stochastic gradient descent optimization algorithm to solve it. Most previous systems are only based on the user-item feedback matrix. In many applications, in addition to the user-item rating/purchase matrix, item-based side information such as product reviews, book reviews, item comments, and movie plots can be easily collected from the Internet. This abundant item-based information can be used for recommendation systems. In the second model, we propose a novel predictive collaborative filtering approach that exploits both the partially observed user-item recommendation matrix and the item-based side information to produce top-N recommender systems. The proposed approach automatically identifies the most interesting items for each user from his or her non-recommended item pool by aggregating over his or her recommended items via a low-rank coefficient matrix. Moreover, it also simultaneously builds linear regression models from the item-based side information such as item reviews to predict the item recommendation scores for the users. The proposed approach is formulated as a rank constrained joint minimization problem with integrated least squares losses, for which an efficient analytical solution can be derived. In the third model, we also propose a joint discriminative prediction model that exploits both the partially observed user-item recommendation matrix and the item-based side information to build top-N recommender systems. This joint model aggregates observed user-item recommendation activities to predict the missing/new user-item recommendation scores while simultaneously training a linear regression model to predict the user-item recommendation scores from auxiliary item features. We evaluate the proposed approach on a variety of recommendation tasks. The experimental results show that the proposed joint model is very effective for producing top-N recommendation systems. / Computer and Information Science
|
10 |
Mining Social Tags to Predict Mashup PatternsEl-Goarany, Khaled 11 November 2010 (has links)
In this thesis, a tag-based approach is proposed for predicting mashup patterns, thus deriving inspiration for potential new mashups from the community's consensus. The proposed approach applies association rule mining techniques to discover relationships between APIs and mashups based on their annotated tags. The importance of the mined relationships is advocated as a valuable source for recommending mashup candidates while mitigating common problems in recommender systems. The proposed methodology is evaluated through experimentation using a real-life dataset. Results show that the proposed mining approach achieves prediction accuracy with 60% precision and 79% recall improvement over a direct string matching approach that lacks the mining information. / Master of Science
|
Page generated in 0.0379 seconds