• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 90
  • 14
  • 13
  • 9
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 161
  • 161
  • 161
  • 88
  • 55
  • 54
  • 52
  • 46
  • 33
  • 31
  • 30
  • 27
  • 27
  • 27
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Recurrent neural networks for time-series prediction.

Brax, Christoffer January 2000 (has links)
Recurrent neural networks have been used for time-series prediction with good results. In this dissertation recurrent neural networks are compared with time-delayed feed forward networks, feed forward networks and linear regression models on a prediction task. The data used in all experiments is real-world sales data containing two kinds of segments: campaign segments and non-campaign segments. The task is to make predictions of sales under campaigns. It is evaluated if more accurate predictions can be made when only using the campaign segments of the data. Throughout the entire project a knowledge discovery process, identified in the literature has been used to give a structured work-process. The results show that the recurrent network is not better than the other evaluated algorithms, in fact, the time-delayed feed forward neural network showed to give the best predictions. The results also show that more accurate predictions could be made when only using information from campaign segments.
12

Contextual Recurrent Level Set Networks and Recurrent Residual Networks for Semantic Labeling

Le, Ngan Thi Hoang 01 May 2018 (has links)
Semantic labeling is becoming more and more popular among researchers in computer vision and machine learning. Many applications, such as autonomous driving, tracking, indoor navigation, augmented reality systems, semantic searching, medical imaging are on the rise, requiring more accurate and efficient segmentation mechanisms. In recent years, deep learning approaches based on Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) have dramatically emerged as the dominant paradigm for solving many problems in computer vision and machine learning. The main focus of this thesis is to investigate robust approaches that can tackle the challenging semantic labeling tasks including semantic instance segmentation and scene understanding. In the first approach, we convert the classic variational Level Set method to a learnable deep framework by proposing a novel definition of contour evolution named Recurrent Level Set (RLS). The proposed RLS employs Gated Recurrent Units to solve the energy minimization of a variational Level Set functional. The curve deformation processes in RLS is formulated as a hidden state evolution procedure and is updated by minimizing an energy functional composed of fitting forces and contour length. We show that by sharing the convolutional features in a fully end-to-end trainable framework, RLS is able to be extended to Contextual Recurrent Level Set (CRLS) Networks to address semantic segmentation in the wild problem. The experimental results have shown that our proposed RLS improves both computational time and segmentation accuracy against the classic variational Level Set-based methods whereas the fully end-to-end system CRLS achieves competitive performance compared to the state-of-the-art semantic segmentation approaches on PAS CAL VOC 2012 and MS COCO 2014 databases. The second proposed approach, Contextual Recurrent Residual Networks (CRRN), inherits all the merits of sequence learning information and residual learning in order to simultaneously model long-range contextual infor- mation and learn powerful visual representation within a single deep network. Our proposed CRRN deep network consists of three parts corresponding to sequential input data, sequential output data and hidden state as in a recurrent network. Each unit in hidden state is designed as a combination of two components: a context-based component via sequence learning and a visualbased component via residual learning. That means, each hidden unit in our proposed CRRN simultaneously (1) learns long-range contextual dependencies via a context-based component. The relationship between the current unit and the previous units is performed as sequential information under an undirected cyclic graph (UCG) and (2) provides powerful encoded visual representation via residual component which contains blocks of convolution and/or batch normalization layers equipped with an identity skip connection. Furthermore, unlike previous scene labeling approaches [1, 2, 3], our method is not only able to exploit the long-range context and visual representation but also formed under a fully-end-to-end trainable system that effectively leads to the optimal model. In contrast to other existing deep learning networks which are based on pretrained models, our fully-end-to-end CRRN is completely trained from scratch. The experiments are conducted on four challenging scene labeling datasets, i.e. SiftFlow, CamVid, Stanford background, and SUN datasets, and compared against various state-of-the-art scene labeling methods.
13

Predictive Analytics in Cardiac Healthcare and 5G Cellular Networks

Wickramasuriya, Dilranjan S. 19 June 2017 (has links)
This thesis proposes the use of Machine Learning (ML) to two very distinct, yet compelling, applications – predicting cardiac arrhythmia episodes and predicting base station association in 5G networks comprising of virtual cells. In the first scenario, Support Vector Machines (SVMs) are used to classify features extracted from electrocardiogram (EKG) signals. The second problem requires a different formulation departing from traditional ML classification where the objective is to partition feature space into constituent class regions. Instead, the intention here is to identify temporal patterns in unequal-length sequences. Using Recurrent Neural Networks (RNNs), it is demonstrated that accurate predictions can be made as to the base station most likely to provide connectivity for a mobile device as it moves. Atrial Fibrillation (AF) is a common cardiac arrhythmia affecting several million people in the United States. It is a condition in which the upper chambers of the heart are unable to contract effectively leading to inhibited blood flow to the ventricles. The stagnation of blood is one of the major risk factors for stroke. The Computers in Cardiology Challenge 2001 was organized to further research into the prediction of episodes of AF. This research revisits the problem with some modifications. Patient-specific classifiers are developed for AF prediction using a different dataset and employing shorter EKG signal epochs. SVM classification yielded an average accuracy of just above 95% in identifying EKG epochs appearing just prior to fibrillatory rhythms. 5G cellular networks were envisaged to provide enhanced data rates for mobile broadband, support low-latency communication, and enable the Internet of Things (IoT). Handovers contribute to latency as mobile devices are switched between base stations due to movements. Given that customers may not be willing to continuously share their exact locations due to privacy concerns and the establishment of a mobile network architecture with dynamically created virtual cells, this research presents a solution for proactive mobility management using RNNs. A RNN is trained to identify patterns in variable-length sequences of Received Signal Strength (RSS) values, where a mobile device is permitted to connect to more than a single base station at a time. A classification accuracy of over 98% was achieved in a simulation model that was set up emulating an urban environment.
14

Multivariate Time-Series Data Requirements in Deep Learning Models

Challa, Harshitha 01 October 2021 (has links)
No description available.
15

Algoritmy pro rozpoznávání pojmenovaných entit / Algorithms for named entities recognition

Winter, Luca January 2017 (has links)
The aim of this work is to find out which algorithm is the best at recognizing named entities in e-mail messages. The theoretical part explains the existing tools in this field. The practical part describes the design of two tools specifically designed to create new models capable of recognizing named entities in e-mail messages. The first tool is based on a neural network and the second tool uses a CRF graph model. The existing and newly created tools and their ability to generalize are compared on a subset of e-mail messages provided by Kiwi.com.
16

Réseaux de neurones récurrents pour le traitement automatique de la parole / Speech processing using recurrent neural networks

Gelly, Grégory 22 September 2017 (has links)
Le domaine du traitement automatique de la parole regroupe un très grand nombre de tâches parmi lesquelles on trouve la reconnaissance de la parole, l'identification de la langue ou l'identification du locuteur. Ce domaine de recherche fait l'objet d'études depuis le milieu du vingtième siècle mais la dernière rupture technologique marquante est relativement récente et date du début des années 2010. C'est en effet à ce moment qu'apparaissent des systèmes hybrides utilisant des réseaux de neurones profonds (DNN) qui améliorent très notablement l'état de l'art. Inspirés par le gain de performance apporté par les DNN et par les travaux d'Alex Graves sur les réseaux de neurones récurrents (RNN), nous souhaitions explorer les capacités de ces derniers. En effet, les RNN nous semblaient plus adaptés que les DNN pour traiter au mieux les séquences temporelles du signal de parole. Dans cette thèse, nous nous intéressons tout particulièrement aux RNN à mémoire court-terme persistante (Long Short Term Memory (LSTM) qui permettent de s'affranchir d'un certain nombre de difficultés rencontrées avec des RNN standards. Nous augmentons ce modèle et nous proposons des processus d'optimisation permettant d'améliorer les performances obtenues en segmentation parole/non-parole et en identification de la langue. En particulier, nous introduisons des fonctions de coût dédiées à chacune des deux tâches: un simili-WER pour la segmentation parole/non-parole dans le but de diminuer le taux d'erreur d'un système de reconnaissance de la parole et une fonction de coût dite de proximité angulaire pour les problèmes de classification multi-classes tels que l'identification de la langue parlée. / Automatic speech processing is an active field of research since the 1950s. Within this field the main area of research is automatic speech recognition but simpler tasks such as speech activity detection, language identification or speaker identification are also of great interest to the community. The most recent breakthrough in speech processing appeared around 2010 when speech recognition systems using deep neural networks drastically improved the state-of-the-art. Inspired by this gains and the work of Alex Graves on recurrent neural networks (RNN), we decided to explore the possibilities brought by these models on realistic data for two different tasks: speech activity detection and spoken language identification. In this work, we closely look at a specific model for the RNNs: the Long Short Term Memory (LSTM) which mitigates a lot of the difficulties that can arise when training an RNN. We augment this model and introduce optimization methods that lead to significant performance gains for speech activity detection and language identification. More specifically, we introduce a WER-like loss function to train a speech activity detection system so as to minimize the word error rate of a downstream speech recognition system. We also introduce two different methods to successfully train a multiclass classifier based on neural networks for tasks such as LID. The first one is based on a divide-and-conquer approach and the second one is based on an angular proximity loss function. Both yield performance gains but also speed up the training process.
17

Learning Long Temporal Sequences in Spiking Networks by Multiplexing Neural Oscillations

Vincent-Lamarre, Philippe 17 December 2019 (has links)
Many living organisms have the ability to execute complex behaviors and cognitive processes that are reliable. In many cases, such tasks are generated in the absence of an ongoing external input that could drive the activity on their underlying neural populations. For instance, writing the word "time" requires a precise sequence of muscle contraction in the hand and wrist. There has to be some patterns of activity in the areas of the brain responsible for this behaviour that are endogenously generated every time an individual performs this action. Whereas the question of how such neural code is transformed in the target motor sequence is a question of its own, their origin is perhaps even more puzzling. Most models of cortical and sub-cortical circuits suggest that many of their neural populations are chaotic. This means that very small amounts of noise, such as an additional action potential in a neuron of a network, can lead to completely different patterns of activity. Reservoir computing is one of the first frameworks that provided an efficient solution for biologically relevant neural networks to learn complex temporal tasks in the presence of chaos. We showed that although reservoirs (i.e. recurrent neural networks) are robust to noise, they are extremely sensitive to some forms of structural perturbations, such as removing one neuron out of thousands. We proposed an alternative to these models, where the source of autonomous activity is no longer originating from the reservoir, but from a set of oscillating networks projecting to the reservoir. In our simulations, we show that this solution produce rich patterns of activity and lead to networks that are both resistant to noise and structural perturbations. The model can learn a wide variety of temporal tasks such as interval timing, motor control, speech production and spatial navigation.
18

Identifying dyslectic gaze pattern : Comparison of methods for identifying dyslectic readers based on eye movement patterns

Lustig, Joakim January 2016 (has links)
Dyslexia affects between 5-17% of all school children, mak-ing it the most common learning disability. It has beenfound to severely affect learning ability in school subjectsas well as limit the choice of further education and occupa-tion. Since research has shown that early intervention andsupport can mitigate the negative effects of dyslexia, it iscrucial that the diagnosis of dyslexia is easily available andaimed at the right children. To make sure children whoare experiencing problems reading and potentially could bedyslectic are investigated for dyslexia an easy access, sys-tematic, and unbiased screening method would be helpful.This thesis therefore investigates the use of machine learn-ing methods to analyze eye movement patterns for dyslexiaclassification.The results showed that it was possible to separatedyslectic from non-dyslectic readers to 83% accuracy, us-ing non-sequential feature based machine learning methods.Equally good results for lower sample frequencies indicatedthat consumer grade eye trackers can be used for the pur-pose. Furthermore a sequential approach using RecurrentNeural Networks was also investigated, reaching an accu-racy of 78%. The thesis is intended to be an introduction to whatmethods could be viable for identifying dyslexia and as aninspiration for researchers aiming to do larger studies in thearea.
19

Sentiment Analysis of YouTube Public Videos based on their Comments

Kvedaraite, Indre January 2021 (has links)
With the rise of social media and publicly available data, opinion mining is more accessible than ever. It is valuable for content creators, companies and advertisers to gain insights into what users think and feel. This work examines comments on YouTube videos, and builds a deep learning classifier to automatically determine their sentiment. Four Long Short-Term Memory-based models are trained and evaluated. Experiments are performed to determine which deep learning model performs with the best accuracy, recall, precision, F1 score and ROC curve on a labelled YouTube Comment dataset. The results indicate that a BiLSTM-based model has the overall best performance, with the accuracy of 89%. Furthermore, the four LSTM-based models are evaluated on an IMDB movie review dataset, achieving an average accuracy of 87%, showing that the models can predict the sentiment of different textual data. Finally, a statistical analysis is performed on the YouTube videos, revealing that videos with positive sentiment have a statistically higher number of upvotes and views. However, the number of downvotes is not significantly higher in videos with negative sentiment.
20

Efficient image based localization using machine learning techniques

Elmougi, Ahmed 23 April 2021 (has links)
Localization is critical for self-awareness of any autonomous system and is an important part of the autonomous system stack which consists of many phases including sensing, perceiving, planning and control. In the sensing phase, data from on board sensors are collected, preprocessed and passed to the next phase. The perceiving phase is responsible for self awareness or localization and situational awareness which includes multi-objects detection and scene understanding. After the autonomous system is aware of where it is and what is around it, it can use this knowledge to plan for the path it can take and send control commands to pursue this path. In this proposal, we focus on the localization part of the autonomous stack using camera images. We deal with the localization problem from different perspectives including single images and videos. Starting with the single image pose estimation, our approach is to propose systems that not only have good localization accuracy, but also have low space and time complexity. Firstly, we propose SurfCNN, a low cost indoor localization system that uses SURF descriptors instead of the original images to reduce the complexity of training convolutional neural networks (CNN) for indoor localization application. Given a single input image, the strongest SURF features descriptors are used as input to 5 convolutional layers to find its absolute position and orientation in arbitrary reference frame. The proposed system achieves comparable performance to the state of the art using only 300 features without the need for using the full image or complex neural networks architectures. Following, we propose SURF-LSTM, an extension to the idea of using SURF descriptors instead the original images. However, instead of CNN used in SurfCNN, we use long short term memory (LSTM) network which is one type of recurrent neural networks (RNN) to extract the sequential relation between SURF descriptors. Using SURF-LSTM, We only need 50 features to reach comparable or better results compared with SurfCNN that needs 300 features and other works that use full images with large neural networks. In the following research phase, instead of using SURF descriptors as image features to reduce the training complexity, we study the effect of using features extracted from other CNN models that were pretrained on other image tasks like image classification without further training and fine tuning. To learn the pose from pretrained features, graph neural networks (GNN) are adopted to solve the single image localization problem (Pose-GNN) by using these features representations either as features of nodes in a graph (image as a node) or converted into a graph (image as a graph). The proposed models outperform the state of the art methods on indoor localization dataset and have comparable performance for outdoor scenes. In the final stage of single image pose estimation research, we study if we can achieve good localization results without the need for training complex neural network. We propose (Linear-PoseNet) by which we can achieve similar results to the other methods based on neural networks with training a single linear regression layer on image features from pretrained ResNet50 in less than one second on CPU. Moreover, for outdoor scenes, we propose (Dense-PoseNet) that have only 3 fully connected layers trained on few minutes that reach comparable performance to other complex methods. The second localization perspective is to find the relative poses between images in a video instead of absolute poses. We extend the idea used in SurfCNN and SURF-LSTM systems and use SURF descriptors as feature representation of the images in the video. Two systems are proposed to find the relative poses between images in the video using 3D-CNN and 2DCNN-RNN. We show that using 3D-CNN is better than using the combination of CNN-RNN for relative pose estimation. / Graduate

Page generated in 0.0489 seconds