Spelling suggestions: "subject:"[een] RECURSIVE LEAST SQUARES"" "subject:"[enn] RECURSIVE LEAST SQUARES""
1 |
Random Matrix Theory Analysis of Fixed and Adaptive Linear ReceiversPeacock, Matthew James McKenzie January 2006 (has links)
Doctor of Philosophy (PhD) / This thesis considers transmission techniques for current and future wireless and mobile communications systems. Many of the results are quite general, however there is a particular focus on code-division multiple-access (CDMA) and multi-input multi-output (MIMO) systems. The thesis provides analytical techniques and results for finding key performance metrics such as signal-to-interference and noise power ratios (SINR) and capacity. This thesis considers a large-system analysis of a general linear matrix-vector communications channel, in order to determine the asymptotic performance of linear fixed and adaptive receivers. Unlike many previous large-system analyses, these results cannot be derived directly from results in the literature. This thesis considers a first-principles analytical approach. The technique unifies the analysis of both the minimum-mean-squared-error (MMSE) receiver and the adaptive least-squares (ALS) receiver, and also uses a common approach for both random i.i.d. and random orthogonal precoding. The approach is also used to derive the distribution of sums and products of free random matrices. Expressions for the asymptotic SINR of the MMSE receiver are derived, along with the transient and steady-state SINR of the ALS receiver, trained using either i.i.d. data sequences or orthogonal training sequences. The results are in terms of key system parameters, and allow for arbitrary distributions of the power of each of the data streams and the eigenvalues of the channel correlation matrix. In the case of the ALS receiver, we allow a diagonal loading constant and an arbitrary data windowing function. For i.i.d. training sequences and no diagonal loading, we give a fundamental relationship between the transient/steady-state SINR of the ALS and the MMSE receivers. We demonstrate that for a particular ratio of receive to transmit dimensions and window shape, all channels which have the same MMSE SINR have an identical transient ALS SINR response. We demonstrate several applications of the results, including an optimization of information throughput with respect to training sequence length in coded block transmission.
|
2 |
Vehicle Ahead Property Estimation in Heavy Duty Vehicles / Skattning av egenskaper hos framförvarande tungt fordonFelixson, Henrik January 2014 (has links)
No description available.
|
3 |
Random Matrix Theory Analysis of Fixed and Adaptive Linear ReceiversPeacock, Matthew James McKenzie January 2006 (has links)
Doctor of Philosophy (PhD) / This thesis considers transmission techniques for current and future wireless and mobile communications systems. Many of the results are quite general, however there is a particular focus on code-division multiple-access (CDMA) and multi-input multi-output (MIMO) systems. The thesis provides analytical techniques and results for finding key performance metrics such as signal-to-interference and noise power ratios (SINR) and capacity. This thesis considers a large-system analysis of a general linear matrix-vector communications channel, in order to determine the asymptotic performance of linear fixed and adaptive receivers. Unlike many previous large-system analyses, these results cannot be derived directly from results in the literature. This thesis considers a first-principles analytical approach. The technique unifies the analysis of both the minimum-mean-squared-error (MMSE) receiver and the adaptive least-squares (ALS) receiver, and also uses a common approach for both random i.i.d. and random orthogonal precoding. The approach is also used to derive the distribution of sums and products of free random matrices. Expressions for the asymptotic SINR of the MMSE receiver are derived, along with the transient and steady-state SINR of the ALS receiver, trained using either i.i.d. data sequences or orthogonal training sequences. The results are in terms of key system parameters, and allow for arbitrary distributions of the power of each of the data streams and the eigenvalues of the channel correlation matrix. In the case of the ALS receiver, we allow a diagonal loading constant and an arbitrary data windowing function. For i.i.d. training sequences and no diagonal loading, we give a fundamental relationship between the transient/steady-state SINR of the ALS and the MMSE receivers. We demonstrate that for a particular ratio of receive to transmit dimensions and window shape, all channels which have the same MMSE SINR have an identical transient ALS SINR response. We demonstrate several applications of the results, including an optimization of information throughput with respect to training sequence length in coded block transmission.
|
4 |
On the regularization of the recursive least squares algorithm. / Sobre a regularização do algoritmo dos mínimos quadrados recursivos.Tsakiris, Manolis 25 June 2010 (has links)
This thesis is concerned with the issue of the regularization of the Recursive Least-Squares (RLS) algorithm. In the first part of the thesis, a novel regularized exponentially weighted array RLS algorithm is developed, which circumvents the problem of fading regularization that is inherent to the standard regularized exponentially weighted RLS formulation, while allowing the employment of generic time-varying regularization matrices. The standard equations are directly perturbed via a chosen regularization matrix; then the resulting recursions are extended to the array form. The price paid is an increase in computational complexity, which becomes cubic. The superiority of the algorithm with respect to alternative algorithms is demonstrated via simulations in the context of adaptive beamforming, in which low filter orders are employed, so that complexity is not an issue. In the second part of the thesis, an alternative criterion is motivated and proposed for the dynamical regulation of regularization in the context of the standard RLS algorithm. The regularization is implicitely achieved via dithering of the input signal. The proposed criterion is of general applicability and aims at achieving a balance between the accuracy of the numerical solution of a perturbed linear system of equations and its distance from the analytical solution of the original system, for a given computational precision. Simulations show that the proposed criterion can be effectively used for the compensation of large condition numbers, small finite precisions and unecessary large values of the regularization. / Esta tese trata da regularização do algoritmo dos mínimos-quadrados recursivo (Recursive Least-Squares - RLS). Na primeira parte do trabalho, um novo algoritmo array com matriz de regularização genérica e com ponderação dos dados exponencialmente decrescente no tempo é apresentado. O algoritmo é regularizado via perturbação direta da inversa da matriz de auto-correlação (Pi) por uma matriz genérica. Posteriormente, as equações recursivas são colocadas na forma array através de transformações unitárias. O preço a ser pago é o aumento na complexidade computacional, que passa a ser de ordem cúbica. A robustez do algoritmo resultante ´e demonstrada via simula¸coes quando comparado com algoritmos alternativos existentes na literatura no contexto de beamforming adaptativo, no qual geralmente filtros com ordem pequena sao empregados, e complexidade computacional deixa de ser fator relevante. Na segunda parte do trabalho, um critério alternativo ´e motivado e proposto para ajuste dinâmico da regularização do algoritmo RLS convencional. A regularização é implementada pela adição de ruído branco no sinal de entrada (dithering), cuja variância é controlada por um algoritmo simples que explora o critério proposto. O novo critério pode ser aplicado a diversas situações; procura-se alcançar um balanço entre a precisão numérica da solução de um sistema linear de equações perturbado e sua distância da solução do sistema original não-perturbado, para uma dada precisão. As simulações mostram que tal critério pode ser efetivamente empregado para compensação de números de condicionamento (CN) elevados, baixa precisão numérica, bem como valores de regularização excessivamente elevados.
|
5 |
Previsão de níveis fluviais em tempo atual com modelo de regressão adaptativo: aplicação na bacia do rio UruguaiMoreira, Giuliana Chaves January 2016 (has links)
Este trabalho avaliou o potencial da aplicação da técnica recursiva dos mínimos quadrados (MQR) para o ajuste em tempo atual dos parâmetros de modelos autorregressivos com variáveis exógenas (ARX), as quais são constituídas pelos níveis de montante para melhorar o desempenho das previsões de níveis fluviais em tempo atual. Três aspectos foram estudados em conjunto: variação do alcance escolhido para a previsão, variação da proporção da área controlada em bacias a montante e variação da área da bacia da seção de previsão. A pesquisa foi realizada em três dimensões principais: a) metodológica (sem recursividade; com recursividade; com recursividade e fator de esquecimento); b) temporal (6 alcances diferentes: 10, 24, 34, 48, 58 e 72 horas); e c) espacial (variação da área controlada da bacia e da área da bacia definida pela seção de previsão). A área de estudo escolhida para essa pesquisa foi a bacia do rio Uruguai com exutório no posto fluviométrico de Uruguaiana (190.000 km²) e as suas sub-bacias embutidas de Itaqui (131.000 km²), Passo São Borja (125.000km²), Garruchos (116.000 km²), Porto Lucena (95.200 km²), Alto Uruguai (82.300 km²) e Iraí (61.900 km²). Os dados de níveis fluviométricos, com leituras diárias às 07:00 e às 17:00 horas, foram fornecidos pela Companhia de Pesquisa de Recursos Minerais (CPRM), sendo utilizados os dados de 1/1/1991 a 30/6/2015. Para a análise de desempenho dos modelos, foi aplicado como estatística de qualidade o coeficiente de Nash-Sutcliffe (NS) e o quantil 0,95 dos erros absolutos (EA(0,95): erro que não foi ultrapassado com a frequência de 0,95). Observou-se que os erros EA(0,95) dos melhores modelos obtidos para cada bacia sempre aumentam com a redução da área controlada, ou seja, a qualidade das previsões diminui com o deslocamento da seção de controle de jusante para montante. O ganho na qualidade das previsões com a utilização dos recursos adaptativos torna-se mais evidente, especialmente quando observam-se os valores de EA(0,95), pois esta estatística é mais sensível, com diferenças maiores em relação ao coeficiente NS. Além disso, este é mais representativo para os erros maiores, que ocorrem justamente durante os eventos de inundações. De modo geral, foi observado que, à medida que diminui a área da bacia, é possível obter previsões com alcances cada vez menores. Porém a influência do tamanho da área controlada de bacias a montante melhora o desempenho de bacias menores quando se observam principalmente os erros EA(0,95). Por outro lado, se a proporção da bacia controlada de montante já é bastante grande, como é o caso das alternativas 1 e 2 utilizadas para previsão em Itaqui (entre 88,5% e 95,4 %, respectivamente), os recursos adaptativos não fazem muita diferença na obtenção de melhores resultados. Todavia, quando se observam bacias com menores áreas de montante controladas, como é o caso de Porto Lucena para a alternativa 2 (65% de área controlada), o ganho no desempenho dos modelos com a utilização dos recursos adaptativos completos (MQR+f.e: mínimos quadrados recursivos com fator de esquecimento) torna-se relevante. / This study evaluated the potential of the application of the recursive least squares technique (RLS) to adjust in real time the model parameters of the autoregressive models with exogenous variables (ARX), which consists of the upstream levels, to improve the performance of the forecasts of river levels in real time. Three aspects were studied jointly: the variation of the lead time chosen for the forecast, the variation in the proportion of controlled area in upstream basins and variation in the area of forecasting section of the basin. The research was conducted in three main dimensions: a) methodological (without recursion; with recursion; with recursion and forgetting factor); b) temporal (6 different lead times: 10, 24, 34, 48, 58 and 72 hours); and c) spatial (variation in the controlled area of the basin and the area of the basin defined by the forecast section). The study area chosen for this research was the Uruguay River basin with its outflow at the river gage station of Uruguaiana (190,000 km²) and its entrenched sub-basins in Itaqui (131,000 km²), Passo São Borja (125,000 km²), Garruchos (116,000 km²), Porto Lucena (95,200 km²), Alto Uruguai (82,300 km²), and Iraí (61,900 km²). The river levels data, with daily readings at 7am and 5pm, were provided by the Company of Mineral Resources Research (CPRM), with the data used from January 1, 1991 to June 30, 2015. We applied the Nash-Sutcliffe coefficient (NS) and the quantile 0.95 of absolute errors (EA(0,95): error has not been exceeded at the rate of 0.95) for the analysis of models performances. We observed that the errors EA(0.95) of the best models obtained for each basin always increase with the reduction of the controlled area then the quality of the forecasts decreases with displacement of the downstream control section upstream. The gain in quality of the forecasts with the use of adaptive resources becomes more evident especially when the observed values of EA(0.95) as this statistic is more sensitive with greater differences in relation to the Nash-Sutcliffe Coefficient (NS). Moreover, this is most representative for larger errors which occur precisely during flooding events. In general, we observed that, as much as the area of the basin decreases, it is possible to obtain forecasts with smaller lead times, but the influence of the size of the area controlled upstream basins improves the performance of smaller basins when observing, especially the errors EA (0.95). However, if the proportion of the upstream of controlled basin is already quite large - as in the case of the alternatives 1 and 2 used for forecast in Itaqui (between 88.5% and 95.4%, respectively) - the adaptive resources do not differ too much in getting better results. However, when observing basins with smaller areas controlled upstream - as is the case of Porto Lucena to alternative 2 (65% controlled area) - the performance gain of the models with the use of the complete adaptive resources (MQR+f.e.) becomes relevant.
|
6 |
On the regularization of the recursive least squares algorithm. / Sobre a regularização do algoritmo dos mínimos quadrados recursivos.Manolis Tsakiris 25 June 2010 (has links)
This thesis is concerned with the issue of the regularization of the Recursive Least-Squares (RLS) algorithm. In the first part of the thesis, a novel regularized exponentially weighted array RLS algorithm is developed, which circumvents the problem of fading regularization that is inherent to the standard regularized exponentially weighted RLS formulation, while allowing the employment of generic time-varying regularization matrices. The standard equations are directly perturbed via a chosen regularization matrix; then the resulting recursions are extended to the array form. The price paid is an increase in computational complexity, which becomes cubic. The superiority of the algorithm with respect to alternative algorithms is demonstrated via simulations in the context of adaptive beamforming, in which low filter orders are employed, so that complexity is not an issue. In the second part of the thesis, an alternative criterion is motivated and proposed for the dynamical regulation of regularization in the context of the standard RLS algorithm. The regularization is implicitely achieved via dithering of the input signal. The proposed criterion is of general applicability and aims at achieving a balance between the accuracy of the numerical solution of a perturbed linear system of equations and its distance from the analytical solution of the original system, for a given computational precision. Simulations show that the proposed criterion can be effectively used for the compensation of large condition numbers, small finite precisions and unecessary large values of the regularization. / Esta tese trata da regularização do algoritmo dos mínimos-quadrados recursivo (Recursive Least-Squares - RLS). Na primeira parte do trabalho, um novo algoritmo array com matriz de regularização genérica e com ponderação dos dados exponencialmente decrescente no tempo é apresentado. O algoritmo é regularizado via perturbação direta da inversa da matriz de auto-correlação (Pi) por uma matriz genérica. Posteriormente, as equações recursivas são colocadas na forma array através de transformações unitárias. O preço a ser pago é o aumento na complexidade computacional, que passa a ser de ordem cúbica. A robustez do algoritmo resultante ´e demonstrada via simula¸coes quando comparado com algoritmos alternativos existentes na literatura no contexto de beamforming adaptativo, no qual geralmente filtros com ordem pequena sao empregados, e complexidade computacional deixa de ser fator relevante. Na segunda parte do trabalho, um critério alternativo ´e motivado e proposto para ajuste dinâmico da regularização do algoritmo RLS convencional. A regularização é implementada pela adição de ruído branco no sinal de entrada (dithering), cuja variância é controlada por um algoritmo simples que explora o critério proposto. O novo critério pode ser aplicado a diversas situações; procura-se alcançar um balanço entre a precisão numérica da solução de um sistema linear de equações perturbado e sua distância da solução do sistema original não-perturbado, para uma dada precisão. As simulações mostram que tal critério pode ser efetivamente empregado para compensação de números de condicionamento (CN) elevados, baixa precisão numérica, bem como valores de regularização excessivamente elevados.
|
7 |
Design of an adaptive power system stabilizerJackson, Gregory A. 10 April 2007 (has links)
Modern power networks are being driven ever closer to both their physical and operational limits. As a result, control systems are being increasingly relied on to assure satisfactory system performance. Power system stabilizers (PSSs) are one example of such controllers. Their purpose is to increase system damping and they are typically designed using a model of the network that is valid during nominal operating conditions. The limitation of this design approach is that during off-nominal operating conditions, such as those triggered by daily load fluctuations, performance of the controller can degrade.
The research presented in this report attempts to evaluate the possibility of employing an adaptive PSS as a means of avoiding the performance degradation precipitated by off-nominal operation. Conceptually, an adaptive PSS would be capable of identifying changes in the network and then adjusting its parameters to ensure suitable damping of the identified network. This work begins with a detailed look at the identification algorithm employed followed by a similarly detailed examination of the control algorithm that was used. The results of these two investigations are then combined to allow for a preliminary assessment of the performance that could be expected from an adaptive PSS.
The results of this research suggest that an adaptive PSS is a possibility but further work is needed to confirm this finding. Testing using more complex network models must be carried out, details pertaining to control parameter tuning must be resolved and closed-loop time domain simulations using the adaptive PSS design remain to be performed. / May 2007
|
8 |
Wideband Adaptive Array Applied to OFDM SystemHuang, Ren-Huang 13 July 2004 (has links)
Orthogonal frequency division multiplexing (OFDM) technique has been extensively used in digital wireless communications, such as Digital Broadcasting and wireless local area network (WLAN). It is considered to be one of the most promising techniques for transmission on the downlinks of broadband wireless access systems to combat multipath and multiple access interference (MAI). Spatial processing that exploits the diversity provided by smart antenna (SA) or intelligent antenna (IA) arrays, in which the adaptive beamformer is employed, is another alternatives to increase the efficiency of wireless system capacity and performance without allocating additional frequency spectrum. It allows the system to make full use of spatial diversity due to multiple antennas [5][6]. To further improve the performance for suppressing various interference sources; including narrowband and wideband interference, flat and frequency selective fading, for different channel environmentin. In this thesis, a smart antenna with wideband beamspace approach array beamformer associated with the slideing window (SW) linearly constrained RLS (SW-LC-RLS) algorithm, and the OFDM systems with smart antenna array are emhasized. Computer simulation results confirmed that our proposed scheme could achieve desired performance compared with the conventional approach, in terms of MAI and other interference suppression.
|
9 |
Frequency-Invariant Broadband Antenna Array Beamformer with Linearly Constrained Adaptation AlgorithmsYe, Yi-Jyun 31 August 2005 (has links)
Spatial processing that exploits the diversity provided by smart antenna arrays, in which the adaptive beamformer is employed, is another alternative to increase the efficiency of wireless system capacity and performance without allocating additional frequency spectrum. An array beamformer is a processor used in conjunction with an array of sensors to provide a versatile form of spatial filtering; it can be designed to form main lobe in direction corresponding to the desired source and nulling the interferences from others direction. They are two types of adaptive array beamformer structures, viz., broadband and narrowband array structures. To deal with the wideband desired signal or interferences the broadband array beamformer is preferred. For broadband interferences suppression, many adaptive array beamforming algorithms, based on the linearly constrained have been extensively used. In this thesis, the beamspace approach for designing the broadband antenna array beamformer, with frequency invariant character, is devised and implemented with the sliding window linearly constrained RLS (SW-LC-RLS) algorithm, to deal with the broadband moving jammers (or interferences) suppression. Also, to combat the pointing error effect of desired user¡¦s look direction, the derivative constraint is adopted for devising the derivative SW-LC-RLS beamforming algorithm for broadband moving jammers suppression. Computer simulation results confirmed that the proposed scheme is more robust against the moving jammers over the conventional algorithms. It can be applied to the existing wideband wireless communications systems to achieve desired performance for supporting high data rate communication services.
|
10 |
Adaptive Rake Multiuser Receiver with Linearly Constrained Sliding Window RLS Algorithm for DS-CDMA SystemsLee, Hsin-Pei 04 July 2003 (has links)
The technique of direct sequence code division multiple access (DS-CDMA) cellular system has been the focus of increased attention. In this thesis, we will consider the environment of DS-CDMA systems, where the asynchronous narrow band interference due to other systems is joined suddenly to the CDMA system. The suddenly joined narrow band interference will make the system crush down. The main concern of this thesis is to deal with suddenly joined narrow band interference cancellation.
An adaptive filtering algorithm based on sliding window criterion and variable forgetting factor is known to be very attractive for violent changing environment. In this thesis, a new sliding window linearly constrained recursive least squares (SW LC-RLS) algorithm and variable forgetting factor linearly constrained recursive least squares (VFF LC-RLS) algorithm on the modified minimum mean squared error (MMSE) structure [9] is devised for RAKE receiver in direct sequence code-division multiple access (DS-CDMA) system over multipath fading channels. Where the channel estimation scheme is accomplished at the output of adaptive filter. The proposed SW LC-RLS algorithm and VFF LC-RLS has the advantage of having faster convergence property and tracking ability, and can be applied to the environment, where the narrow band interference is suddenly joined to the system, to achieve desired performance. Via computer simulation, we show that the performance, in terms of mean square errors (MSE) and signal to interference plus noise ratio (SINR), is superior to the conventional LC-RLS and orthogonal decomposition-based LMS algorithms based on the MMSE structure [9].
|
Page generated in 0.0453 seconds