Spelling suggestions: "subject:"[een] RELEASE"" "subject:"[enn] RELEASE""
241 |
In situ chemical oxidation of TCE-contaminated groundwater using slow permanganate-releasing materialWang, Sze-Kai 03 August 2011 (has links)
The purpose of this study was to use controlled release technology combining with in situ chemical oxidation (ISCO) and permeable reactive barrier (PRB) to remediate TCE-contaminated groundwater. In this study, potassium permanganate (KMnO4) releasing material was designed for potassium permanganate release in groundwater. The components of potassium permanganate releasing material included poly (£`-caprolactone) (PCL), potassium permanganate, and starch with a weight ratio of 2:1:0.5. Approximately 63.8% (w/w) of potassium permanganate was released from the material after 76 days of operation. The released was able to oxidize contaminant in groundwater. Results from the solid oxidation demand (SOD) experiment show that the consumption rate increased with increased contaminant concentration. TCE removal efficiency increased with the increased TCE concentration. The second-order rate law can be used to simulate the TCE degradation trend. In the column experiment, results show that the released MnO4- could oxidize TCE and TCE degradation byproducts when 95.6 pore volume (PV) of contaminated groundwater was treated. More than 95% of TCE removal can be observed in the column study. Although the concentration of manganese dioxide (MnO2) began to rise after 8.8 PV of operation, TCE removal was not affected. Results also show that low level of hexavalent chromium was detected (< 0.05 mg/L). Results from the scanning electron microscope (SEM) and energy-dispersive spectroscope (EDX) analyses show that the amounts of manganese and potassium in the materials decreased after the releasing experiment. Results indicate that the concentration of TCE and SOD need to be analyzed before the releasing materials are applied in situ. In the practical application, the releasing materials will not become solid wastes because they are decomposed after use. If this slow-releasing technology can be combined with a permeable reactive barrier system, this technology will become a more economic and environmentally-friendly green remedial system.
|
242 |
Experimental and computational investigations of therapeutic drug release from biodegradable poly(lactide-co-glycolide) (plg) microspheresBerchane, Nader Samir 15 May 2009 (has links)
The need to tailor release-rate profiles from polymeric microspheres remains one of
the leading challenges in controlled drug delivery. Microsphere size, which has a
significant effect on drug release rate, can potentially be varied to design a controlled
drug delivery system with desired release profile. In addition, drug release rate from
polymeric microspheres is dependent on material properties such as polymer molecular
weight. Mathematical modeling provides insight into the fundamental processes that
govern the release, and once validated with experimental results, it can be used to tailor a
desired controlled drug delivery system.
To these ends, PLG microspheres were fabricated using the oil-in-water emulsion
technique. A quantitative study that describes the size distribution of poly(lactide-coglycolide)
(PLG) microspheres is presented. A fluid mechanics-based correlation that
predicts the mean microsphere diameter is formulated based on the theory of
emulsification in turbulent flow. The effects of microspheres’ mean diameter,
polydispersity, and polymer molecular weight on therapeutic drug release rate from poly(lactide-co-glycolide) (PLG) microspheres were investigated experimentally. Based
on the experimental results, a suitable mathematical theory has been developed that
incorporates the effect of microsphere size distribution and polymer degradation on drug
release. In addition, a numerical optimization technique, based on the least squares
method, was developed to achieve desired therapeutic drug release profiles by
combining individual microsphere populations.
The fluid mechanics-based mathematical correlation that predicts microsphere mean
diameter provided a close fit to the experimental results. We show from in vitro release
experiments that microsphere size has a significant effect on drug release rate. The initial
release rate decreased with an increase in microsphere size. In addition, the release
profile changed from first order to concave-upward (sigmoidal) as the microsphere size
was increased. The mathematical model gave a good fit to the experimental release data.
Using the numerical optimization technique, it was possible to achieve desired release
profiles, in particular zero-order and pulsatile release, by combining individual
microsphere populations at the appropriate proportions.
Overall, this work shows that engineering polymeric microsphere populations having
predetermined characteristics is an effective means to obtain desired therapeutic drug
release patterns, relevant for controlled drug delivery.
|
243 |
Heat release effects on decaying homogeneous compressible turbulenceLee, Kurn Chul 15 May 2009 (has links)
High Mach-number compressible flows with heat release are inherently more
complicated than incompressible flows due to, among other reasons, the activation
of the thermal energy mode. Such flow fields can experience significant fluctuations
in density, temperature, viscosity, conductivity and specific heat, which affect velocity
and pressure fluctuations. Furthermore, the flow field cannot be assumed to be
dilatation-free in high Mach numbers and even in low Mach-number flows involving
combustion, or in boundary layers on heated walls. The main issue in these
high-speed and highly-compressible flows is the effect of thermal gradients and fluctuations
on turbulence. The thermal field has various routes through which it affects
flow structures of compressible turbulence. First, it has direct influence through pressure,
which affects turbulence via pressure-strain correlation. The indirect effects of
thermal fields on compressible turbulence are through the changes in flow properties.
The high temperature gradients alter the transport coefficient and compressibility of
the flow. The objective of this work is to answer the following questions: How do
temperature fluctuations change the compressible flow structure and energetics? How
does compressibility in the flow affect the non-linear pressure redistribution process?
What is the main effect of spatial transport-coefficient variation? We perform direct
numerical simulations (DNS) to answer the above questions. The investigations are categorized into four parts: 1) Turbulent energy cascade and kinetic-internal energy
interactions under the influence of temperature fluctuations; 2) Return-to-isotropy of
anisotropic turbulence under the influence of large temperature fluctuations; 3) The
effect of turbulent Mach number and dilatation level on small-scale (velocity-gradient)
dynamics; 4) The effect of variable transport-coefficients (viscosity and diffusivity) on
cascade and dissipation processes of turbulence. The findings lead to a better understanding
of temperature fluctuation effects on non-linear processes in compressible
turbulence. This improved understanding is expected to provide direction for improving
second-order closure models of compressible turbulence.
|
244 |
A Study of The Mixed-Mode Fracture of Molding Compound-Substrate Interface of IC PackageHuang, Ming-Yeong 22 August 2003 (has links)
Abstract
The interface crack of an IC package is easily existed under vibration, high temperature or collision. Its reliability will be reduced significantly for the existence of the crack. This study, therefore, is to investigate the fracture mechanism of the underfill/substrate interface with different crack length.
In this study, mixed mode fracture of the underfill/substrate interface, was investigated by single lap tension test. Based on the load-displacement curve, J integral, energy release rate and stress intensity factor were calculated. Moreover, the relationships among the stress intensity facto KI, KII and phase angle were also derived.
|
245 |
Preparation Of Chitosan-polyvinylpyrrolidone Microspheres And Films For Controlled Release And Targeting Of 5-fluorouracilOzerkan, Taylan 01 September 2007 (has links) (PDF)
Controlled drug delivery systems deliver drugs at predetermined rates for extended periods. Although there are various types such as capsules, tablets etc, micro and nano spheres are the most commonly used systems. In this study, a set of chitosan-polyvinylpyrrolidone (CH-PVP) microspheres containing different amounts of polyvinylpyrrolidone as semi inter penetrating networks (semi-IPN) were prepared as controlled release systems. Emulsification method was applied for the preparation of microspheres and some of them were conjugated with a monoclonal antibody which is immunoglobulin G (IgG). CH-PVP films were also prepared by solvent casting method with the same composition as in the microspheres and, mechanical and surface properties of the films were examined. Prepared microspheres were characterized by SEM, stereo and confocal microscopes. Some microspheres were loaded with a model chemotherapeutic drug, 5-Fluorouracil (5-FU), and in-vitro release of 5-FU were examined in phosphate buffer solutions (pH 7.4, 0.01 M.) It was shown that for semi-IPN samples release was faster compared to pure CH samples and the total release was achived 30 days for CH:PVP-2:1, CH:PVP-3:1 semi-IPNs and CH microspheres and 27 days for CH:PVP-1:1 semi-IPN microspheres. The antibody conjugated microspheres were targeted to MDA-MB (human causasian breast carcinoma cancer cells and coculture cells in culture medium. For the CH-PVP films, it was obtained that as the amount of PVP increased, hydrophobicity as well as mechanical strength of the system was decreased.
|
246 |
Design Of Intelligent Nanoparticles For Use In Controlled ReleaseBanu, Bayyurt 01 March 2009 (has links) (PDF)
The aim of this project was to design an intelligent controlled release system
based on thermoresponsive nanoparticles for cancer therapy and to evaluate
the efficiencies of these systems with in vitro cell culture. Poly(Nisopropylacrylamide),
an important thermoresponsive polymer, was selected
for this study to prepare the responsive nanoparticles. This polymer has an
lower critical solution temperature (LCST) of 32 oC, below which it is
hydrophilic and above this temperature, it shows hydrophobic behavior.
Controlling drug release with this property was the objective of this study.
Nanoparticles were prepared by nanoprecipitation method. By using different
solvent:non-solvent ratios and polymer concentrations, different samples
were prepared. The particle size was decreased when solvent:non-solvent
ratio was increased and polymer concentration was decreased. This was found
to be related with the solution viscosity.
Nanoparticles prepared from polymers prepared with different initiatoraccelarator
amounts had significantly different sizes and release rates, and
additionally the size of particles prepared from polymers with various
crosslinker amounts were decreased with increased croslinker amount.
In situ release experiments were performed both below and above polymer& / #8216 / s
LCST degree. Uncrosslinked nanoparticles demonstrated higher release rate of
Celecoxib above LCST. However, there was no significant difference with the
crosslinked nanoparticles.
Crosslinked and uncrosslinked nanoparticles were tested on Saos-2 cells to
assess their toxicity. Both Celecoxib loaded and free crosslinked particles were
found to be cytotoxic. Uncrosslinked nanoparticles showed an increased
toxicity upon loading with the bioactive agent, Celecoxib. In conclusion,
uncrosslinked particles would be a proper drug carrier for cancer therapy with
enhanced drug loading.
|
247 |
The mechanism of beta-bungarotoxin on spontaneous transmitter release at developing neuromuscular synapse.Kang, Kai-Hsiang 21 July 2003 (has links)
beta-Bungarotoxin (beta-BuTx), the presynaptic neurotoxin purified from the venom of Bungarus multicinctus, consists of two dissimilar polypeptide subunits. A phospholipase A2 subunit named A chain, and a non-phospholipase A2 subunits named B chain. The A chain and B chain are covalently linked by one disulfide bridge. Although it has been widely accepted that the toxic effect of beta-BuTx is attributed to the disturbance of presynaptic transmitter release, however the inhibition of transmitter release by beta-BuTx is still obscure. Here we investigate the mechanism that mediates facilitation of transmitter release at the neuromuscular junction induced by beta-BuTx, using Xenopus nerve-muscle coculture.
Application of beta-BuTx and isotoxins BM12, BM13 led to a marked increase in the frequency of spontaneous synaptic currents (SSCs) after a short period (12~18 min) of latency. The synaptic potentiation induced by these toxins was abolished when Ca2+ in the medium is substituted by Ba2+ (a potent phospholipase A2 inhibitor). Application of PLP-BM12 and PLP-BM13, which have been chemical-modification to lose their PLA2 activity from BM12 and BM13, failed to potentiate the transmitter release.
|
248 |
Evaluation of collared peccary translocations in the Texas Hill CountryPorter, Brad Alan 17 September 2007 (has links)
Historically, the collared peccary (Tayassu tajacu) occurred throughout much of
Texas including the northern portion of the Texas Hill Country. Remaining peccary
populations were extirpated in much of their former range due to over harvest and habitat
loss. In 2004, efforts to restore peccary populations to the Texas Hill Country began when
Texas Parks and Wildlife Department biologists translocated 29 collared peccaries into the
2,157 ha, Mason Mountain Wildlife Management Area (MMWMA). I evaluated the
success of peccary translocations for mixed and intact family groups by comparing
survival, ranges, and dispersal of translocated, radio-tagged peccaries. In addition, I
evaluated two release methods (soft versus hard) to determine differences in population
demographics. I found that peccary ranges and dispersal patterns did not differ (P > 0.05)
between intact and mixed groups or release method (soft versus hard). However, I did find
that peccary fidelity to release sites was greater for soft releases of family groups.
Individuals from the soft release group dispersed the shortest distance and stayed on
MMWMA. Only 2 individuals from the hard releases stayed on MMWMA while the rest
(19 individuals) dispersed 4-8 km. Future peccary translocations should emphasize the
release method employed and family structure of individuals released to improve
translocation effectiveness in establishing populations in target areas.
|
249 |
Experimental and mathematical investigation of dynamic availability of metals in sedimentHong, Yongseok 17 April 2014 (has links)
Contaminated sediments are periodically subjected to resuspension processes during either storm events or due to dredging. In sediments, metals are often contained in insoluble low bioavailability forms. Upon resuspension, however, biogeochemical processes associated with the exposure to more oxic conditions may lead to transformation and release of the metals, giving rise to exposure and risk in the water column. Batch experiments suggested that oxidation of reduced species and corresponding pH decrease were the most importance processes controlling metals release upon sediment resuspension. A mathematical model was implemented to better understand the complex underlying biogeochemical reactions that affect metals release. The model described the metals dynamics and other inter-related important biogeochemical factors well and was successful at predicting the metals release from different sediment reported in the literature. Tidal and other cyclic variations in oxygen, pH and other relevant parameters in the overlying water may also lead to cyclic transformations and release of metals from surficial sediments. In simulated estuarine microcosm experiments, cyclic variations in pH and salinity due to freshwater/saltwater exchange were shown to lead to cyclic variations in metal release. Both pH and salinity were important factors controlling interstitial dissolved metals concentrations, however, in terms of freely dissolved metals concentrations, which have been considered to be more related with toxicity and bioavailability, pH was the single most important parameter. The mathematical model was extended to the conditions of the cyclic behavior in an estuary and successfully described metals release under such conditions. It is believed that the model can be used to predict the metals behavior in other sediments and conditions by model calibration with a similar experimental approach to that used in this study. / text
|
250 |
Drug Diffusion and Nano Excipient Formation Studied by Electrodynamic MethodsBrohede, Ulrika January 2007 (has links)
New smart drugs demand new smart drug delivery systems and also new smart analysis methods for the drug delivery process and material characterization. This thesis contributes to the field by introducing a new electrodynamic approach for studying the drug diffusion proc-esses as well as the formation of a new type of drug delivery systems, the so called mesoporous nano excipients. Drug diffusion processes from different pharmaceutical materials were examined. The transport of charged drug substances was investigated by electrodynamic methods; either as a release process governed by diffusion using the alternating ionic current method or by applying a voltage, sinusoidal or dc, to force the drug ions to move in an electric field. Temperature-dependent drug release from microcrystalline cellulose tablets was examined in order to extract information about the diffu-sion process. Percolation theory was also employed to binary mixtures of an insoluble and electrically insulating matrix material together with a soluble and ionic conducting drug. Further, dielectric spectros-copy was proven to be a powerful method for examining the state of vesicle formation of drug and surfactant molecules in a carbopol gel. Finally, a new potential class of pharmaceutical materials were exam-ined, namely the AMS-n mesoporous materials, showing that the al-ternating ionic current method is powerful both in the study of the synthesis of and in the release process from these.
|
Page generated in 0.0442 seconds