Spelling suggestions: "subject:"[een] RELEASE"" "subject:"[enn] RELEASE""
211 |
In vitro and in vivo testing of a gastric retention device : development and evaluation of a new colonic delivery systemAhmed, Iman Saad 04 September 2002 (has links)
This thesis describes evaluation of a gastric retention device (GRD)
developed at Oregon State University. The device was originally fabricated from
Xanthan gum and Locust bean gum. A modified gastric retention device
containing other additives was developed and investigated in this work. The
modified device was evaluated in vitro for swelling and dissolution properties using
riboflavin as a model drug. Different shapes and sizes of GRDs were tested in dogs
to study the gastric retention potential of these devices. The effect of the device on
food emptying from the stomach in dogs was also investigated. Endoscopic studies
in dogs also showed that the device swells rapidly and considerably in gastric fluid.
The bioavailability of riboflavin from three different size GRDs was
determined in six fasted human volunteers and compared to an immediate release
formulation. The biostudy indicated that the bioavailability of riboflavin from a
large size GRD was more than triple that measured after administration of the
immediate release formulation. Deconvolution was used to determine gastric
residence time of the different size GRDs.
A new colonic delivery system made of acetaminophen loaded beads
produced by extrusion and spheronization and coated with different ratios of pectin
and ethylcellulose coating solutions in a spray coating apparatus was also
developed in this work. Such beads release their drug content in the colon due to
susceptibility of pectin in the outer coat to enzymatic action of colonic bacteria.
The new delivery system was evaluated in vitro by conducting release studies in
different dissolution media to mimic transit times, pH and enzyme conditions in the
gastrointestinal tract. The gastrointestinal transit behavior of drug beads was also
assessed by conducting gamma-scintigraphic studies in dogs.
The bioavailability and pharmacokinetic parameters of acetaminophen from
several colonic delivery system formulations were determined in human volunteers
and compared to the immediate release commercial product Tylenol®. A selected
pectin-ethylcellulose coat formulation in the ratio 1:3 was further evaluated in six
volunteers under both fed and fasting conditions and was found to be effective and
to provide sustained drug release in the colon over a period of 12 hours. / Graduation date: 2003
|
212 |
Development and testing of a sustained release acetaminophen tablet for the treatment of chronic pain in osteoarthritis patientsKeller, Carol Ann 04 May 2000 (has links)
Acetaminophen has been safely used for analgesia for many years.
Literature suggests that a plasma acetaminophen level of 5��g/ml is necessary to
maintain analgesic relief in humans. Current dosing regiments are inconvenient (every
4-6 hours) and do not maintain this minimum plasma level. Simulations were
conducted to examine various doses and input rates for sustained release formulations
of acetaminophen. Once parameters were selected from the simulations, sample
formulations were prepared and tested using standard dissolution techniques.
Investigations into dose/size relationships, hydroxypropylmethylcellulose (HPMC)
percentage for erosion matrix tablets, compression force, tablet shape, tablet
divisibility, and granulation methods were performed for non-disintegrating
hydrophilic matrix tablets.
Tablets containing 5% and 7.5% HPMC were selected for pharmacokinetic
study in 10 healthy human subjects. Tylenol Extra Strength and Tylenol Extended
Relief tablets were administered as control formulations. Pharmacokinetic fitting of
the kinetic profiles of all four formulations were performed using Win Nonlin. The
formulations were best described by a 1-compartment open model with first order
input and first order elimination. The 5% HPMC sustained release acetaminophen
formulation was selected for Phase II clinical trials.
Patients with osteoarthritis of the knee were recruited for a double blind
crossover study of 5% HPMC sustained release acetaminophen formulations and
immediate release acetaminophen. Patients received two tablets of study medication,
four times a day for 4 weeks. After a seven day wash-out period patients were then
crossed over to the other treatment. Patients were evaluated using a twelve question
questionnaire and the time to walk 50 feet was measured. Thirty patients were
enrolled in the study and seventeen patients completed the study. The sustained
release formulations were statistically superior to the baseline treatments in reducing
pain level, decreasing disability, and improving the duration of pain relief. Additional,
larger scale studies are needed to confirm these findings. / Graduation date: 2000
|
213 |
1) Development and in vivo testing of a gastric retention device (GRD) in dogs : 2) product formulations and in vitro-in vivo evaluation of a) immediate release formulation of itraconazole, b) controlled-release formulation of ketoprofen in adultsKapsi, Shivakumar G. 24 November 1998 (has links)
This thesis describes 1) development of a gastric retention device (GRD) to
increase gastric retention time of certain drugs, 2) product formulations of an immediate
release itraconazole and controlled-release ketoprofen. GRD was fabricated from crosslinked
carbohydrate polymers. Rate and extent of hydration of the film in water and in
simulated gastric fluid, compressibility of film, shape of the film, and in vivo gastric
transit time in the stomach of dog were used as tools to evaluate gastric retention
properties. Hydration studies were carried out at 37��C. Evaluation of the device
containing radio-opaque agents, in dogs for gastric retention was carried out with the help
of X-rays. The device was found to stay in the stomach of dogs for at least 10 hours.
GRD containing amoxicillin trihydrate caplets were evaluated in a human. The area
under the excretion rate curve was found to increase by 30% when compared to without
the device.
A successful development of a formulation of water insoluble itraconazole,
without the use of organic solvents, was achieved with modifications from eutectic
mixture techniques. Solubilization of the drug was achieved in polyethylene glycol of
higher molecular weight. A series of formulations made by varying the amounts
ingredients therein, were evaluated for dissolution profile in comparison with the
reference, Sporanox��. Effect of molecular weights of PEG and types of PEG were
evaluated for desired drug dissolution. Preliminary study from 6 subjects under the
conditions of fasting and fed indicated that bioavailability from the new formulation was
increased slightly when compared to the reference. This may be correlated to difference
in the rate of in vitro dissolution, where the new formulation has initial faster dissolution.
A controlled-release formulation of ketoprofen was also developed using a
diffusion-controlled polymer, which was coated onto the drug beads. Release of drugs
from such beads is controlled by the thickness of the coat. Thickness of the coat was
evaluated by SEM and was correlated to the desired in vitro drug release in comparison
to the reference Oruvail��. A three-way cross over study involving the new formulation
and two marketed products in 12 subjects under fasting conditions indicated that there
was a significant difference between the new product and marketed products, so as to be
considered non-bioequivalent. Use of In Vitro-In Vivo Correlations and Convolution-
Deconvolution relations predicted desired in vitro drug dissolution in a subsequent
modification of the formulation. / Graduation date: 1999
|
214 |
Product formulations and in vitro-in vivo evaluation of a novel "Tablet-in-a-Bottle" suspension formulation of amoxicillin and clavulanic acidYang, Ning-Ning 11 June 1997 (has links)
This thesis describes a novel "Tablet-in-a-Bottle" oral suspension formulation.
Ingredients with unstable physical or chemical characteristics can be placed in a core tablet, and then dry compression coated with an outer layer which provides separation from other components. The new suspension formulation comprises fast disintegrating clavulanic acid (KCA) tablets with a powder mixture containing amoxicillin. Hardness, friability, flow properties and weight uniformity of tablets for three different formulations were investigated and were all improved in a third formulation. Stability tests under different humidities were conducted. Amoxicillin and clavulanic acid in the new formulations showed the same stabilities when compared with the marketed product Augmentin��. Preliminary pharmacokinetics and bioavailability of one new formulation were evaluated by comparing in vitro release rates and in vivo urinary excretion rates. In vitro dissolution studies were carried out according to the USP XXIII paddle method. The new formulation showed faster release rates during the first hour when stirring speed was 25 rpm. However, when 75 rpm stirring speed was applied, the dissolution
profiles for the new formulation and the reference marketed product were identical. A randomized two-way crossover bioequivalence study was designed to evaluate the bioavailabilities. Cmax, Tmax and AUC[subscript o--->t] of amoxicillin were within ��20% of the reference pharmacokinetic values. However, Cmax and Tmax of clavulanate were not within ��20%. Bioeqivalence between this new suspension formulation and the marketed product (Augmentin��) were evaluated using a two one-sided t-test. There is not sufficient statistical support with this test to conclude that the two products are bioequivalent. However, this is most likely due to small sample size and high intersubject variation and statistical support for bioequivalence is expected in a larger study group. / Graduation date: 1998
|
215 |
Relationship between linear viscoelastic properties and molecular structure for linear and branched polymersvan Ruymbeke, Evelyne 27 May 2005 (has links)
The prediction of linear viscoelasticity (LVE) of a polymer melts from the knowledge of their structure has received tremendous attention in recent years.
Quite accurate quantitative predictions are obtained for linear polymers, including inverse predictions of molecular weight distributions from knowledge of rheological response. The situation for branched polymers is much more complicated for at least two reasons. First, because of the incredible variety of architectures that can be, and are actually, made in the lab or by industry. Second, because branched polymers are characterised by very broad distributions of relaxation times, which are very dependent on details of the architecture.
The main objective of this work is to propose a model suitable for predicting LVE of arbitrary mixtures of (a)symmetric stars and linear molecules, where the interrelation of relaxation processes (as reptation, tube length fluctuations or constraint release process) cannot be predicted a priori. We validate it on a large set of experimental data taken from the literature, from our own experiments or from co-workers.
Next, we use it to detect long chain branching (LCB) in sparsely branched polycarbonate samples. This characterization technique, based on the analysis of the relaxation moduli, is compared to solution characterization. A similar work is performed for polyethylene samples, on which we compare our method to classical methods based on the measurement of their intrinsic viscosity or on the analysis of their activation energies spectrum.
The success of our model in describing the relaxation of an already broad range of polymer structures gives some hope for understanding the dynamics of more complex systems. Indeed, its structure allows us to easily extend it to H or comb polymers and then, to proceed to polymers always closer to the industrial polymers.
|
216 |
Synthesis, characterization and pharmaceutical application of selected copolymer nanoparticles / D.P. OttoOtto, Daniël Petrus January 2007 (has links)
A multidisciplinary literature survey revealed that copolymeric nanoparticles could be applied in various technologies such as the production of paint, adhesives, packaging material and lately especially drug delivery systems. The specialized application and investigation of copolymers in drug delivery resulted in the synthesis of two series of copolymeric materials, i.e. poly(styrene-co-methyl methacrylate) (P(St-co-MMA)) and poly(styrene-co-ethyl methacrylate) (P(St-co-EMA)) were synthesized via the technique of o/w microemulsion copolymerization. These copolymers have not as yet been utilized to their full potential in the development of new drug delivery systems. However the corresponding hydrophobic homopolymer poly(styrene) (PS) and the hydrophilic homopolymer poly(methyl methacrylate) (PMMA) are known to be biocompatible. Blending of homopolymers could result in novel applications, however is virtually impossible due to their unfavorable mixing entropies. The immiscibility challenge was overcome by the synthesis of copolymers that combined the properties of the immiscible homopolymers. The synthesized particles were analyzed by gel permeation chromatography combined with multi-angle laser light scattering (GPC-MALLS) and attenuated total reflectance Fourier infrared spectroscopy (ATR-FTIR). These characterizations revealed crucial information to better understand the synthesis process and particle properties i.e. molecular weight, nanoparticle size and chemical composition of the materials. Additionally, GPC-MALLS revealed the copolymer chain conformation. These characterizations ultimately guided the selection of appropriate copolymer nanoparticles to develop a controlled-release drug delivery system. The selected copolymers were dissolved in a pharmaceutically acceptable solvent, tetrahydrofuran (THF) together with a drug, rifampin. Solvent casting of this dispersion resulted in the evaporation of the solvent and assembly of numerous microscale copolymer capsules. The rifampin molecules were captured in these microcapsules through a process of phase separation and coacervation. These microcapsules finally sintered to produce a multi-layer film with an unusual honeycomb structure, bridging yet another size scale hierarchy. Characterization of these delivery systems revealed that both series of copolymer materials produced films capable of controlling drug release and that could also potentially prevent biofilm adhesion. / Thesis (Ph.D. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2008.
|
217 |
Assessment of South Florida's Bonefish StockLarkin, Michael F 06 August 2011 (has links)
Florida’s recreational bonefish fishery generates substantial economic benefits to the region; however, the resource has never been adequately assessed to determine standard benchmarks for sustainability. The situation offered a unique opportunity to address unresolved issues in sustainability for a valuable recreational fishery that is almost exclusively catch and release. The goal of this dissertation was three-fold: (1) to develop a comprehensive framework for conducting rigorous stock assessments on recreational catch-and-release fisheries; (2) to apply these methods to the Florida bonefish fishery to compare results against internationally-recognized sustainable fishery benchmarks; and, (3) provide recommendations for longer-term assessment strategies and management efforts. Due to the dearth of available bonefish information, existing literature were synthesized and new quantitative data and models concerning bonefish demographics (i.e. growth, survivorship) and population dynamics were developed. Data for age-and-growth were collected with a focus on both small (< 100 mm FL) and large (>650 mm FL) bonefish which had been under-sampled in previous research. A two-stage growth model was developed that allowed predictions of size-at-age over the complete life history of the species. Evidence from multiple analyses suggested a single species of bonefish in the Florida fishery. A mail survey of bonefish captains (guides) acquired baseline statistics on the south Florida bonefish fishery. Fleet fishing effort is mostly concentrated in the northern Florida Keys (Biscayne Bay to Islamorada) and reflects to some extent bonefish spatial population abundance. The majority of the respondents indicated the stock had declined over the past few decades. A sized-based mortality estimator was used to determine mortality. Changes in current population size from 2003-2010 were determined from a visual survey. Historical stock size was inferred from a relative abundance index from standardized tournament catch rates. Annual trends of the mortality estimates implied a stable population that is not declining which contrasts with the index of abundance and visual survey results. Both the index of abundance and visual survey displayed overall declining trends in recent years. Bonefish movements were determined from anchor tag and acoustic telemetry. Anchor tagging data were analyzed to evaluate movements, stock size structure and mortality. Results revealed no significant relationships between distance moved and days at large or days at large and length at tagging; however, significant individual movements (>100 kilometers) were recorded. Use of acoustic telemetry showed frequent movements around the barrier islands, schooling behavior, and a possible spawning effect with movements to offshore reef habitats. Stock status was addressed with two different classes of assessment models: REEFS, a length-based model which estimated the stock as moderately exploited with the current fishing mortality rate less than the maximum sustainable yield fishing mortality rate; and a “catch-free” age-structured model which indicated a large stock decline over the past 40 years with the stock currently bordering an overfished benchmark. The age-structured model was assumed to be the most robust method because it incorporated the majority of the research data (age and growth, selectivity, mortality, visual survey, CPUE standardization, vessel effort). In conclusion, the stock’s productivity has been significantly reduced over the past 50 years due to fishing, but also degradation of key prey populations, habitats, and water quality, resulting in a current bonefish population that is bordering an overfished state. Recommendations are provided for improving future stock assessments and management approaches. The assessment framework and quantitative methods and models developed here are broadly applicable to bonefish stocks around the world.
|
218 |
Development and evaluation of sustained-release floating minitablets/Développement et évaluation de mini-comprimés flottants à libération prolongéeGoole, Jonathan 02 July 2008 (has links)
Parmi toutes les voies d’administration, la voie orale a toujours suscité un grand intérêt. Les formes prises par voie orale présentent une grande facilité d’administration pour le patient, tandis que pour les chercheurs, la physiologie du système gastro-intestinal peut être facilement modélisable. Malheureusement, son importante variabilité, liée principalement au temps de vidange gastrique, peut conduire à une mauvaise reproductibilité des effets thérapeutiques et à une diminution de la biodisponibilité. Ce problème est surtout rencontré dans le cas des principes actifs présentant une fenêtre d’absorption étroite au niveau de l’intestin supérieur [Deshpande et col., 1996]. Une solution a été de développer des formes galéniques à libération prolongée caractérisées par un temps de résidence gastrique accru. Ainsi, le principe actif est libéré progressivement en amont de sa fenêtre d’absorption. Dans cette optique, plusieurs systèmes ont été développés : des formes bioadhésives, expansibles, gonflantes ou à hautes densités [Singh et Kim, 2000]. Mais parmi toutes ces formes, ce sont les systèmes flottants qui semblent offrir la protection la plus efficace contre une vidange gastrique précoce [Moës, 1989]. Seth et Tossounian ont ainsi développé une gélule flottante à libération prolongée, basée sur le gonflement d’un dérivé cellulosique. Etant une forme monolithique, sa vidange gastrique était soumise au phénomène de tout ou rien. De plus, cette forme présentait un inconvénient majeur puisqu’elle était sujette à des fractionnements intra-gastriques, diminuant de ce fait la reproductibilité inter- et intra-individuelle [Seth et Tossounian, 1984].
Afin de résoudre ces problèmes de variabilité, des mini-comprimés flottants à libération prolongée ont été développés. Notre but était donc de développer des mini-comprimés capables de flotter dans l’estomac pendant une période de temps prolongée tout en assurant la délivrance progressive du principe actif. Ces mini-comprimés devaient fournir une bonne flottaison et une libération prolongée pour diverses substances actives. Nous avons également essayé d’augmenter au maximum la teneur en principe actif afin de faciliter l’administration de la gélule contenant les mini-comprimés en réduisant le volume nécessaire pour contenir la dose désirée. L’utilisation de la granulation thermoplastique [Hamdani et col., 2002] suivie d’une compression directe a permis d’obtenir un procédé de fabrication simple, rapide et peu coûteux. Les mini-comprimés contenaient au minimum un agent actif, un agent liant et un mélange effervescent. La levodopa a d’abord été sélectionnée comme modèle de principe actif hydrosoluble.
La première forme développée renfermait un agent gélifiant cellulosique capable de retenir le dioxyde de carbone généré tout en assurant la libération prolongée du principe actif. En incorporant 17% (m/m) d’agents effervescents et 25% (m/m) d’agent gélifiant au sein des mini-comprimés matriciels, la libération de la levodopa s’est étendue sur une période de 8 heures. Contrairement à la Prolopa® HBS 125, ils n’ont jamais présenté de problème de fragmentation ou de « désintégration » lors des essais de dissolution. Les mini-comprimés matriciels étaient caractérisés par un faible délai de flottaison (± 1 min.) quel que soit le pH (1.2 ou 3.0), des forces de flottaison élevées et une durée totale de flottaison supérieures à 13 heures. Une évaluation par la technique du poids résultant a montré qu’ils généraient des forces de flottaison supérieures – ex. PRmax = 70mg/100mg - à la spécialité commerciale Prolopa® HBS 125 – ex. PRmax = 45mg/100mg.
Suite aux bons résultats obtenus in vitro, une étude préliminaire in vivo a été effectuée sur des sujets volontaires sains. La riboflavine a été préférée à la levodopa comme modèle hydrosoluble en raison du caractère non invasif des prélèvements. L’hypothèse selon laquelle les mini-comprimés flottants offraient une rétention gastrique supérieure à celle obtenue avec les mini-comprimés non flottants semblait avoir été vérifiée. En effet, la quantité totale de riboflavine excrétée après administration concomitante des mini-comprimés flottants et d’un repas était supérieure à celle excrétée avec une forme flottante prise à jeun, ainsi qu’à celle excrétée lors de l’administration de la forme non flottante prise en même temps que le repas. De plus, quel que soit le régime alimentaire, la vitesse d’excrétion urinaire maximale et le temps nécessaire pour l’atteindre ont toujours été supérieurs après administration de la forme flottante.
Une seconde technologie a ensuite permis de remplacer l’agent gélifiant par un enrobage capable de maintenir le dioxyde de carbone à l’intérieur de la forme tout en assurant la libération prolongée de la levodopa. Le but de cette substitution était de pouvoir augmenter le pourcentage de principe actif contenu dans la forme. Un dérivé acrylique insoluble – Eudragit® RL30D – a été utilisé comme agent filmogène. Un agent plastifiant peu hydrosoluble – ATEC – a permis d’obtenir un film élastique résistant aux tensions engendrées par la génération du dioxyde de carbone. En appliquant une teneur équivalente à 20% (m/m) d’enrobage autour du noyau, la libération de la levodopa n’a pas été retardée et s’est prolongée pendant plus de 20 heures. Ces mini-comprimés enrobés ont flotté en 20 minutes à pH 1.2 et ont conservé leurs propriétés de flottaison pendant plus de 13 heures.
L’incorporation de lactose (10% m/m) au sein de l’enrobage a permis de libérer l’entièreté de la levodopa en 18 heures. De plus, en augmentant la teneur en acide tartrique dans le mélange permettant de générer le dioxyde de carbone (de 3 à 15 % m/m), le délai de flottaison, identique quel que soit le pH (1.2 ou 3.0), a été réduit de 20 à 8 minutes.
L’influence des propriétés physico-chimiques de la levodopa et de la ciprofloxacine sur les profils de dissolution et de flottaison obtenus à partir des mini-comprimés matriciels et enrobés a ensuite été évaluée. En l’absence de ciprofloxacine dans la composition de l’enrobage, un retard de libération d’une heure est apparu. Il n’a pu être supprimé qu’en incorporant 10% (m/m) de principe actif au sein de l’enrobage. Aucun problème de ce type ne s’est présenté avec la levodopa.
Quel que soit le principe actif incorporé, les mini-comprimés matriciels et enrobés ont flotté en moins de 10 minutes et pendant plus de 13 heures. Toutefois, les valeurs maximales de poids résultant obtenues ont été supérieures en présence de ciprofloxacine - 220 mg/100mg - qu’après incorporation de levodopa – 90 mg/100mg.
Une étude pharmacocinétique sur volontaires sains a finalement été réalisée sur les mini-comprimés matriciels et enrobés contenant une association de levodopa et de carbidopa. Le but de cette investigation était de comparer les profils pharmacocinétiques de la levodopa et des inhibiteurs de décarboxylases périphériques obtenus à partir des mini-comprimés avec ceux relevés après administration de la spécialité commerciale Prolopa® HBS 125. Une étude scintigraphique a également été réalisée afin d’évaluer le temps de résidence gastrique des 3 formes flottantes. Cette étude a démontré que les mini-comprimés – matriciels et enrobés – présentaient un temps de rétention gastrique supérieure à 4 heures. Ils ont également fourni des concentrations plasmatiques soutenues en levodopa et carbidopa pendant plus de 12 heures. La courbe plasmatique de la levodopa obtenue à partir des mini-comprimés enrobés était similaire à celle obtenue après administration de la Prolopa® HBS 125. Dans les 2 cas, les concentrations plasmatiques en levodopa ont augmenté rapidement après 3 heures. Ce phénomène est sans doute dû aux phénomènes de désintégration observés in vitro et par scintigraphie. Les mini-comprimés matriciels ont fourni des résultats moins variables en fonction du sexe. Ils n’ont présenté aucune désintégration intra-gastrique, ce qui a évité l’apparition d’effet de pic au niveau des concentrations plasmatiques en levodopa. Comparativement à la carbidopa, les concentrations plasmatiques en bensérazide étaient inférieures et présentaient d’importantes variations en fonction du sexe.
Le développement de ces nouveaux types de mini-comprimés a également requis l’examen de leur stabilité temporelle. Pour ce faire, ils ont été conservés à différentes conditions de température et d’humidité relative (25±2°C / 60±5% HR ; 30±2°C / 65±5% HR ; 40±2°C / 75±5% HR). A 25°C et 30°C, aucune diminution significative des teneurs en levodopa et carbidopa n’a été observée à partir des 2 types de mini-comprimés. De même, le profil de dissolution des 2 principes actifs sont restés similaires à celui relevé au temps zéro. Après 12 mois de stockage, les mini-comprimés matriciels et enrobés flottaient endéans 10 min et pendant plus de 13 heures. A 40°C, le profil de dissolution de la levodopa et de la carbidopa, ainsi que les propriétés de flottaison des mini-comprimés matriciels et enrobés sont restés similaires à ceux relevés juste après production. Par contre, après 6 mois de stockage, les teneurs en PA ont diminué de façon significative (p < 0.05) lorsqu’ils étaient contenus dans les mini-comprimés matriciels./
Oral sustained-drug-delivery formulations show some limitations connected with the gastric emptying time. In particular, a too rapid gastrointestinal (GI) transit can result in incomplete drug release from the device above the absorption zone, leading to diminish effectiveness of the administered dose, especially when the drug presents a narrow absorption window. A prolongation of gastric residence time of a rate-controlled oral dosage form (DF) can overcome these problems. Thus, the design of sustained-release (SR) DF requires in some cases both prolongation of GI transit time of the DF as well as controlled drug release. In this way, SR floating granulates, made by melt granulation and containing at least an active drug, a meltable lipidic binder and gas-generating agents, and compressed into minitablets (MT), were developed and evaluated in vitro. The first floating system developed contained Methocel® K15M as a swellable polymer both to trap the generated carbon dioxide and to sustain the release of the drug. For the second floating system developed, Methocel® K15M was completely replaced by the drug and a coating step was introduced in the manufacturing process in order to provide a coating capable of maintaining the generated carbon dioxide inside the DF for a prolonged period of time. Levodopa was used as a model drug. Precirol® was used as a meltable binder. Tartaric acid, sodium bicarbonate and calcium carbonate were employed as carbon dioxide-generating agents. Methocel® K15M was used as a gel-forming polymer. The insoluble polymer used to make the gas-trapping membrane was Eudragit® RL30D. Acetyl-triethyl citrate was used as plasticizer. Granulates were prepared by melt granulation, in a vertical small laboratory scale high-shear mixer. MT were prepared by direct compression. The coating was realized into a fluidized bed coating apparatus. A resultant-weight apparatus was used to determine the buoyancy capabilities of the floating minitablets (FMT). A Disteck 2100C USP 29 dissolution apparatus Type II was used for the dissolution tests. The best floating properties of the uncoated FMT were obtained with 3 mm minitablets prepared at low compression forces ranging between 50 and 100 N. When the FMT were filled into gelatin capsules, no sticking was observed. By evaluating the dissolution profiles of levodopa at different pH values, it was found that dissolution profiles depend more on the prolonged-release ability of Methocel® K15M than on the pH-dependent solubility of levodopa.
On the other hand, the optimized 3mm coated FMT floated within 10 min and remained buoyant for more than 13 h, regardless of the pH of the test medium. By evaluating the dissolution profiles of levodopa at different pH, it was found that the release of levodopa was sustained for more than 12 h regardless of the pH, even if the coating did not cancel the effect of the pH-dependant solubility of the active drug.
Finally, the robustness of the uncoated and the coated FMT was assessed by testing the drug release variability in function of the stirring conditions during dissolution tests.
Two formulations -uncoated and coated - of new FMT were developed with success. The floating lag time of the FMT was ranged between 1 and 10 min and the FMT remained buoyant for more than 13 hours. Their ability to sustain the drug release for more than 8 hours was also demonstrated. Pharmacoscintigraphic studies were conducted on the FMT and the following in vivo results assess those obtained in vitro.
|
219 |
Herbivory, phenotypic variation, and reproductive barriers in fucoidsForslund, Helena January 2012 (has links)
Along the shores of the Northern hemisphere Fucus (Phaeophyceae) species are a prominent presence, providing substrate, shelter, and food for many species. Fucus evanescens, a non-indigenous species (NIS) in Sweden, and F. radicans, a recently described species that so far has only been found inside the species poor Baltic Sea, are the focus of this thesis. Interactions with enemies (e.g. predators, herbivores, parasites) have been shown to play a role in the success of NIS. The low consumption of Fucus evanescens by the generalist gastropod Littorina littorea in Sweden was found to depend on high levels of chemical defense in the introduced population, not the failure of the herbivore to recognize F. evanescens as suitable food. A survey of the relative abundance of F. radicans and F. vesiculosus and the most common associated fauna along the Swedish Bothnian Sea coast showed that F. radicans and F. vesiculosus are equally abundant throughout the range of F. radicans. The most common associated fauna were found to be more abundant on F. radicans compared to F. vesiculosus. In Sweden, where F. radicans had lower levels of defense chemicals than F. vesiculosus, F. radicans was grazed more than F. vesiculosus in bioassays. This could, together with other factors, influence the range of F. radicans. Fucus radicans and F. vesiculosus are closely related, recently separated, and growing sympatrically, therefore, possible reproductive barriers between F. radicans and F. vesiculosus were studied. In Estonia F. radicans and F. vesiculosus reproduces at different times of the year. No such clear reproductive barrier was found between the two species in Sweden where they reproduce at the same time and fertilization success and germling survival were the same for hybrids as for F. vesiculosus. Since the high clonality of F. radicans means that the gentic diversity in F. radicans populations is low I investigated how genetic diversity translates to phenotypic diversity in nine traits. Phlorotannin levels, recovery after desiccation, and recovery after freezing showed inherited variation, while the other six traits showed no variation related to genetic diversity. Phenotypic variation in populations of F. radicans will be higher in populations with higher genetic diversity and this might be beneficial to the community. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 3: Accepted.</p>
|
220 |
Electrochemical synthesis of electroactive polymers for drugrelease for bio scaffolds.Almquist, Robert January 2010 (has links)
Stem cell based therapy has the potential to treat several severe diseases; Parkinson’s disease is one well- known example. Transplantation of stem cell derived cells into animal models is unfortunately often associated with tumour formation or- uncontrolled growth of the transplanted cells. One strategy to suppress this tumour formation might be to induce differentiation of these cells, which in turn would prevent them from dividing. Neuroblastoma tumors are known to demonstrate the complete transition from an undifferentiated state to a completely harmful, differentiated appearance and derived cells can be used as a model for cell differentiation and tumor suppression. In this Master Thesis’s the conducting polymers PEDOT and PPy, that upon formation can be doped with biologically active compounds which in- turn can be released in a controlled manner through electrical stimulation, were formed together with various drugs (e.g. Methotrexate and Mycophenolic Acid), here shown to have effect on Neuroblastoma cells. Neuroblastoma- derived cell line SH- SY5Y was used as a model system for neuronal differentiation and tumour inhibition. Release profiles of neuroblastoma active drugs following electrical stimulation were evaluated and the effects from electrochemical processes on simultaneously growing SH- SY5Y cells were investigated. The methods to deposit and release the drugs were based on electropolymerization and electrochemically controlled release, respectively. Controlled release of various drugs and compounds was monitored using Vis- and UV- spectroscopy and on some occasions using HPLC. The electrochemically controlled release of a biologically inactive compound that can be used as a negative control for electrochemical release in future experiments was shown and that resulting electrochemical processes have negative effects on neuroblastoma cell growth.
|
Page generated in 0.0512 seconds