Spelling suggestions: "subject:"[een] RNA-SEQ"" "subject:"[enn] RNA-SEQ""
271 |
Morphological and Physiological Characteristics that Contribute to Insecticide Resistance in Bed Bug (Cimex lectularius L.) EggsDelong, Brittany E. 08 July 2014 (has links)
Although bed bug eggs are a difficult life stage to control with our currently labeled insecticides, few studies have examined how bed bug egg morphology and physiology is potentially related to pesticide resistance in bed bug eggs. Bed bug egg morphological features were examined using scanning electron microscopy (SEM) and the chorion and respiration structures were identified. Scanning electron microscopy photographs and bed bug egg measurements indicated there were no morphological differences between different bed bug egg strains (susceptible and resistant). Bed bug egg respiration rates measured by the amount of oxygen consumed (standard metabolic rate; SMR) also indicated there was no difference in SMR between different bed bug egg strains. Water conservation during respiration is vital to terrestrial insects. Therefore, similar patterns would be expected between egg water loss and respiration rates. However, susceptible strain eggs lost more water than one resistant strain of bed bug eggs, which was dissimilar from the respiration results, indicating that bed bug egg water loss and respiration are not directly related. Dose- response bioassays using two insecticide formulations (Temprid; imidacloprid/β-cyfluthrin, and Transport; acetamiprid/bifenthrin) indicated that bed bug eggs collected from pyrethroid resistant adult bed bug strains are also highly resistant. RNA sequencing of bed bug eggs from two resistant strains indicated that egg resistance may be directly related to the overexpression of multiple genes associated with insecticide resistance. / Master of Science in Life Sciences
|
272 |
Evaluation of Sex Differences in the Hippocampus and Pituitary of Egr1 conditional knockout mice mediated by Nestin-CreSwilley, Cody Lynn 29 August 2023 (has links)
Early growth response 1 (Egr1) is a transcription factor critical for learning and memory in the hippocampus and pituitary cell differentiation. Egr1 has been shown to extend continuation of the long-term potentiation in the hippocampus and is credited for forming long-term memories. The somatotrophs in the pituitary produce growth hormone and are found to be decreased in Egr1KO mice. These animals are also found to be sterile due to a decrease in LHB, which blocks ovulation. All previous studies have evaluated these physiological processes with complete Egr1KO research strains or antisense oligonucleotides, up until now, no data specific to individual type of cells has been generated. In an attempt to focus on the understanding of the functions of Egr1 gene in neural cell lineage, we are using an Egr1cKO Nestin-Cre model. Nestin allows for targeting neuronal lineage specific cells.
In Chapter 1, we provide a systemic view of Egr1 gene and Nestin-Cre as a system for generating conditional knockout mouse strains. The Chapter begins with the identification of Egr1 gene and its protein structure, then proceeds to grasp its link to memory with behavior testing. The critical role of Egr1 in the pituitary and what cell populations are affected is also described. The same goes for Nestin-Cre, along with its limitations and understanding how to account for them in a study. The Egr1cKO Nestin-Cre system is the best form to understand neurological cell populations with Egr1 removal.
In Chapter 2 and Chapter 3, we employ the Egr1cKO Nestin-Cre mouse model to understand cell-specific knockout of Egr1 in the nervous system by evaluating the hippocampus and pituitary. We explore learning and memory through behavioral tests and ribonucleic acid sequencing (RNA-seq) analysis to understand gene expression changes with Egr1 removal. Females showed higher activity during behavior tests, with more movement in the elevated plus maze and lower freezing times during the contextual fear conditioning. RNA-seq had higher changes in females than males but was not affected by the Nestin-Cre system overall. The same RNA-seq changes in the pituitary gland were present, with females having higher genomic differentiation. Females had growth-specific pathways altered by Nestin-Cre. / Doctor of Philosophy / Genetics has become a very important forerunner in scientific research. One gene that has become important in many different research arenas is Early growth response 1 (Egr1). This particular gene is critical for learning, memory, and cell changes in the pituitary. In Chapter 1, we have analyzed the current research landscape of information on Egr1 in its functions with learning and memory, as well as the pituitary. Most previous studies that have been completed only evaluate this gene by its removal from the entire body. This leaves a large gap in information about how this gene functions with specific cell types. To limit the type of cells from which Egr1 has been removed, we have selected Nestin-Cre, a tool to remove genes from neuronal stem cells. The capabilities and limitations of this tool have also been explained in this chapter, along with how the two together can accomplish a cell-specific knockout of Egr1.
In Chapter 2, we have constructed an experiment with behavioral tests for mice, along with RNAseq data from the hippocampus to evaluate what changes have occurred in the Egr1cKO Nestin-Cre model. Female mice are more active in the behavioral test, including the elevated plus maze (EPM) and Contextual fear conditioning (CFC), than male mice. The same holds for differences in the RNAseq data as well.
In Chapter 3, the pituitary of Egr1cKO Nestin-Cre mice is the main focus. We evaluated RNAseq data and determined growth rates of transgenic mice. The mice had different growth rates over twelve weeks between the controls and the knockout. The RNAseq data also revealed many differences between males and females. Female mice had specific growth genes effects by the knockout of Egr1
|
273 |
MCV-miR-M1 targets the host-cell immune response resulting in the attenuation of neutrophil chemotaxisAkhbari, Pouria, Tobin, Desmond J., Poterlowicz, Krzysztof, Roberts, W., Boyne, James R. 17 May 2018 (has links)
Yes / Virus-encoded miRNAs are emerging as key regulators of persistent infection and host-cell immune evasion. Merkel cell polyomavirus (MCPyV), the predominant aetiological agent of Merkel cell carcinoma (MCC), encodes a single miRNA, MCV-miR-M1, which targets the oncogenic MCPyV large T antigen (LT). MCV-miR-M1 has previously been shown to play an important role in establishment of long-term infection, however, the underlying mechanism is not fully understood. A key unanswered question is whether, in addition to auto-regulating LT, MCV-miR-M1 also targets cellular transcripts to orchestrate an environment conducive for persistent infection. To address this, we adopted an RNA-Seq-based approach to identify cellular targets of MCV-miR-M1. Intriguingly, bioinformatics analysis of transcripts that are differentially expressed in cells expressing MCV-miR-M1 revealed several genes implicated in immune evasion. Subsequent target validation led to the identification of the innate immunity protein, SP100, as a direct target of MCV-miR-M1. Moreover, MCV-miR-M1-mediated modulation of SP100 was associated with a significant decrease in CXCL8 secretion, resulting in the attenuation of neutrophil chemotaxis towards Merkel cells harbouring synthetic MCPyV. Based on these observations we propose that MCV-miR-M1 targets key immune response regulators to help facilitate persistent infection, which is a pre-requisite for cellular transformation in MCC. / Funded in part by a University of Bradford studentship to PA and a Royal Society research award to JRB.
|
274 |
Statistical methods for transcriptomics: From microarrays to RNA-seqTarazona Campos, Sonia 30 March 2015 (has links)
La transcriptómica estudia el nivel de expresión de los genes en distintas condiciones experimentales para tratar de identificar los genes asociados a un fenotipo dado así como las relaciones de regulación entre distintos genes. Los datos ómicos se caracterizan por contener información de miles de variables en una muestra con pocas observaciones. Las tecnologías de alto rendimiento más comunes para medir el nivel de expresión de miles de genes simultáneamente son los microarrays y, más recientemente, la secuenciación de RNA (RNA-seq).
Este trabajo de tesis versará sobre la evaluación, adaptación y desarrollo de modelos estadísticos para el análisis de datos de expresión génica, tanto si ha sido estimada mediante microarrays o bien con RNA-seq. El estudio se abordará con herramientas univariantes y multivariantes, así como con métodos tanto univariantes como multivariantes. / Tarazona Campos, S. (2014). Statistical methods for transcriptomics: From microarrays to RNA-seq [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48485 / Premios Extraordinarios de tesis doctorales
|
275 |
Bayesian Modeling for Isoform Identification and Phenotype-specific Transcript AssemblyShi, Xu 24 October 2017 (has links)
The rapid development of biotechnology has enabled researchers to collect high-throughput data for studying various biological processes at the genomic level, transcriptomic level, and proteomic level. Due to the large noise in the data and the high complexity of diseases (such as cancer), it is a challenging task for researchers to extract biologically meaningful information that can help reveal the underlying molecular mechanisms. The challenges call for more efforts in developing efficient and effective computational methods to analyze the data at different levels so as to understand the biological systems in different aspects. In this dissertation research, we have developed novel Bayesian approaches to infer alternative splicing mechanisms in biological systems using RNA sequencing data.
Specifically, we focus on two research topics in this dissertation: isoform identification and phenotype-specific transcript assembly. For isoform identification, we develop a computational approach, SparseIso, to jointly model the existence and abundance of isoforms in a Bayesian framework. A spike-and-slab prior is incorporated into the model to enforce the sparsity of expressed isoforms. A Gibbs sampler is developed to sample the existence and abundance of isoforms iteratively. For transcript assembly, we develop a Bayesian approach, IntAPT, to assemble phenotype-specific transcripts from multiple RNA sequencing profiles. A two-layer Bayesian framework is used to model the existence of phenotype-specific transcripts and the transcript abundance in individual samples. Based on the hierarchical Bayesian model, a Gibbs sampling algorithm is developed to estimate the joint posterior distribution for phenotype-specific transcript assembly. The performances of our proposed methods are evaluated with simulation data, compared with existing methods and benchmarked with real cell line data. We then apply our methods on breast cancer data to identify biologically meaningful splicing mechanisms associated with breast cancer. For the further work, we will extend our methods for de novo transcript assembly to identify novel isoforms in biological systems; we will incorporate isoform-specific networks into our methods to better understand splicing mechanisms in biological systems. / Ph. D. / The next-generation sequencing technology has significantly improved the resolution of the biomedical research at the genomic level and transcriptomic level. Due to the large noise in the data and the high complexity of diseases (such as cancer), it is a challenging task for researchers to extract biologically meaningful information that can help reveal the underlying molecular mechanisms. In this dissertation, we have developed two novel Bayesian approaches to infer alternative splicing mechanisms in biological systems using RNA sequencing data. We have demonstrated the advantages of our proposed approaches over existing methods on both simulation data and real cell line data. Furthermore, the application of our methods on real breast cancer data and glioblastoma tissue data has further shown the efficacy of our methods in real biological applications.
|
276 |
Studies on Zebrafish ThrombocytesFallatah, Weam Ramadan M. 07 1900 (has links)
Zebrafish thrombocytes exhibit characteristics of human platelets and megakaryocytes, making them valuable for studying megakaryopoiesis and thrombopoiesis. Using single-cell RNA sequencing, we analyzed gene expression in young and mature zebrafish thrombocytes. We identified 394 protein-coding genes unique to young thrombocytes, many corresponding with human orthologs, suggesting shared regulatory mechanisms in zebrafish and humans. We hypothesized knocking down these 394 genes should identify the novel regulatory genes that control thrombocyte maturation. To address this, we used the piggyback knockdown method to knock down these genes to study their biological functions in zebrafish thrombopoiesis. We first found the knockdown of nfe2, nfe2l1a, and nfe2l3 reduced both young and mature thrombocyte counts, confirming their role in thrombopoiesis. A comprehensive knockdown screening of the uniquely expressed genes in young thrombocytes identified 7 candidate genes associated with thrombopoiesis. We selected the spi1b gene for further mutant characterization, which revealed its critical role in young thrombocyte development, with homozygous mutations leading to embryonic lethality. Considering megakaryocyte properties in thrombocytes, we studied the potential for polyploidization in zebrafish thrombocytes. The inhibition of AURKA led to the development of polyploid thrombocytes resembling mammalian megakaryocytes, suggesting the retention of genetic programs for megakaryocyte development in zebrafish thrombocytes and providing insights into the evolutionary basis of thrombopoiesis. Thus, our study reveals critical gene expression patterns and regulatory factors in zebrafish thrombocyte development, offering insights into conserved mechanisms relevant to developmental biology and research in thrombosis and hemostasis disorder.
|
277 |
Multimodal investigation of cell death and clearance in Drosophila melanogasterBandyadka, Shruthi 19 August 2024 (has links)
Cell death shapes multicellular organism development and sustains tissue and organ homeostasis. Over the past decade we have begun to understand the breadth of physiological and biochemical diversity in cell death and clearance pathways, which play vital roles in organismal development and heath. While apoptosis and necrosis have been studied extensively across many model systems and contexts, the discovery of non-apoptotic paradigms of cell death and their roles in disease has greatly expanded the field. Collectively called Regulated Cell Death (RCD), these death pathways are regulated in a tissue and context-dependent manner (e.g. disease state). This dissertation is a culmination of multiple projects investigating cell death and clearance events spanning the ovary and the brain of the model organism, Drosophila melanogaster. We undertook the first multi-modal, high-throughput survey, involving single-cell RNA-seq, TRAP-seq, and proteomics, to compare two different archetypes of germline death in the fly egg chamber - apoptosis and phagoptosis. Our analysis identified several important candidates and pathways that are either unique to or shared between the germline death modalities and affecting oogenesis upon their disruption. We also observed that V-ATPases, proton pumps required for germline phagoptosis, are differentially localized throughout oogenesis, and we identified the specific subunits upregulated in phagoptosis. Furthermore, we identified a novel exon splicing event in the ‘a’ subunit isoform of V-ATPases that may facilitate its sub-cellular localization. Using a novel image analysis method involving image segmentation and spatial statistical inference, we determined that circulating immune cells agglomerate at specific niches within the abdomen, in response to egg chamber degeneration resulting from physiological stress of protein-deprivation. We then turned our focus to phagocytosis in the fly brain, which is essential for pruning synapses and for the removal of dying neurons and misfolded proteins. Disruptions to glial phagocytosis results in a range of age-dependent neurodegenerative phenotypes, primarily exemplified by vacuolization of brain tissue. Using a pre-trained deep-learning model to perform image segmentation and 3D reconstruction of vacuoles, we characterized the severity of neurodegeneration in brains lacking the phagocytic receptor Draper in glia and further demonstrated that this phenotype is attenuated by knockdown of the NF-κB transcription factor Relish in flies lacking glial Draper. Collectively, the methods and results described herein will have applications beyond the Drosophila model and the field of cell death, with important implications in understanding fertility and the underpinnings of cognitive disorders.
|
278 |
Influence of Peripheral Immune-Derived EphA4 on Microglial Dynamics Following Traumatic Brain InjuryMills, Jatia 30 July 2024 (has links)
Traumatic brain injury (TBI) elicits an immediate neuroinflammatory response that involves resident glia and infiltrating peripheral immune cells that coordinate tissue damage and functional deficits. The activation of resident microglial has been associated with a change in their morphology from a branched-like ramified cell to an ameboid state. This activation is thought to initiate a pro-inflammatory response leading to the release of neurotoxic, immune chemoattractant, and antigen-presenting signals. Subsequently, peripheral-derived immune cells (PICs), such as neutrophils and monocytes, travel to the site of injury and help coordinate this response. However, little is known regarding whether PICs influence the progressive activation state of microglia in the acute and chronic phases of injury. Overactivation of microglia can lead to neuroinflammation-mediated tissue damage and death or dysfunction of healthy neurons. Therefore, understanding how microenvironmental cues may regulate the microglial response may aid in strategies to retool their activation state in the brain. EphA4 receptor tyrosine kinase has been identified as a potential cell-to-cell contact protein on PICs that could be involved in the inflammatory changes following TBI. While microglial activation changes have been described in TBI models, the mechanistic role of infiltrating peripheral-derived immune cell (PIC) recruitment on microglial fate and function is not well understood. The purpose of my project is to gain a better understating of the temporospatial influence that EphA4-expressing PICs, specifically monocyte/macrophages, have on microglial proliferation, survival, activation phenotype, and debris clean-up using bone marrow GFP chimeric mice and the cortical contusion injury TBI model. / Doctor of Philosophy / Traumatic brain injury (TBI) triggers an immediate response from the brain's immune system, involving both local glial cells and immune cells from outside the brain. These cells work together to mediate the initial injury but, in some cases, cause development of a secondary injury. Microglia, the brain's resident immune cell, change their shape and behavior when activated by a TBI, becoming more aggressive and releasing inflammatory proteins. At the same time, immune cells from the bloodstream, like neutrophils and monocytes, rush to the injury site to assist. Yet, it's unclear how these immune cells affect microglia over time during the injury's acute and chronic phases. If microglia become too active, they can cause further damage to brain tissue and harm healthy neurons. Therefore, understanding the signals that control microglial activity could help us develop therapies to manage brain inflammation. One protein of interest in this process is the EphA4 receptor found on immune cells, which might play a crucial role in inflammation following TBI. While we know that microglia change post-TBI, we don't fully understand how the recruitment of immune cells from outside the brain affects them. My research aims to clarify how EphA4-expressing immune cells, especially monocytes/macrophages, influence microglia in terms of growth, behavior, and their ability to mediate a TBI.
|
279 |
Precision Medicine Approach to Improving Reconstructive Surgery Outcomes for Breast Cancer SurvivorsDegen, Katherine Emily 25 July 2018 (has links)
As the survival rate increases, the importance of quality of life post-cancer is increasing. This, in conjunction with genetic screening, has increase the number of breast reconstructions 36%. The most common complication causing revision of reconstructive surgery is the formation of a dense scar capsule around the silicone implant called capsular contracture. Nearly all patients will experience this complication, though with different degrees of response, ranging from moderate scarring to major disfigurement and pain at the implant site. Presently, there is no way to predict the degree of contraction capsule formation that individual patients will suffer prospectively, nor is there clinical approach to preventing this complication. Patient information and tissue was collected in a uniform manner to address these lingering problems. Clinical data was used to construct a predictive model which can accurately predict capsular contracture severity in breast reconstruction patients. Histological analysis demonstrated differences in structure and cell composition between different capsule severities. Of particular note, a new region was described which could serve as the communication interface between innate immune cells and fibroblasts. RNA-seq analysis identified 1029 significantly dysregulated genes in severe capsules. Pathway enrichment was then performed which highlights IL4/13 signaling, extracellular matrix organization, antigen presentation, and interferon signaling as importantly dysregulated pathways. These RNA results were also compared to various clinical and histological measurements to evaluate novel correlations. PVT-1, a long non-coding RNA associated with cancer, was strongly correlated to capsules formed after cancer removal. This suggests cancerous transformations of cell types that remain after the tumor is removed. Furthermore, transgelin and caspase 7 correlated to myofibroblasts density, suggesting an abnormal fibroblasts that are resistant to cell death and may have enhanced contractile abilities. Capsule formation is a complex process however, with well controlled clinical models quantitative differences can be found. These results serve as stepping stone for the field to move beyond retrospective clinical trials and pursue treatments and preventative measures. / Ph. D. / As the survival rate increases, the importance of quality of life post-cancer is increasing. This, in conjunction with genetic screening, has increase the number of breast reconstructions 36%. The most common complication causing revision of reconstructive surgery is the formation of a dense scar capsule around the silicone implant called capsular contracture. Nearly all patients will experience this complication, though with different degrees of response, ranging from moderate scarring to major disfigurement and pain at the implant site. Presently, there is no way to predict the degree of contraction capsule formation that individual patients will suffer prospectively, nor is there clinical approach to preventing this complication. Patient information and tissue was collected in a uniform manner to address these lingering problems. Clinical data was used to construct a predictive model which can accurately predict capsular contracture severity in breast reconstruction patients. Histological analysis demonstrated differences in structure and cell composition between different capsule severities. Of particular note, a new region was described which could serve as the communication interface between innate immune cells and fibroblasts. RNA-seq analysis identified 1029 significantly dysregulated genes in severe capsules. Pathway enrichment was then performed which highlights IL4/13 signaling, extracellular matrix organization, antigen presentation, and interferon signaling as importantly dysregulated pathways. These RNA results were also compared to various clinical and histological measurements to evaluate novel correlations. PVT-1, a long non-coding RNA associated with cancer, was strongly correlated to capsules formed after cancer removal. This suggests cancerous transformations of cell types that remain after the tumor is removed. Furthermore, transgelin and caspase 7 correlated to myofibroblasts density, suggesting an abnormal fibroblasts that are resistant to cell death and may have enhanced contractile abilities. Capsule formation is a complex process however, with well controlled clinical models quantitative differences can be found. These results serve as stepping stone for the field to move beyond retrospective clinical trials and pursue treatments and preventative measures.
|
280 |
Differential Expression Analysis of Type II Toxin-Antitoxin Genes of Pseudomonas aeruginosa PAO1 under Different Environmental ConditionsHaque, Anamul 02 July 2018 (has links)
Bacterial persistence is considered as one of the primary reason for antibiotic tolerance besides genetically acquired antibiotic resistance. Persisters are the subpopulation of a clonal bacterial population, which can survive environmental extremes and become invulnerable to stresses due to limited metabolic activities and physiological functions. Cognate toxin and antitoxin (TA) pairs, which are transcribed simultaneously from the same or different operons within the bacterial chromosomes or plasmids, play an important role for bacterial survival during stressful growth environments. Pseudomonas aeruginosa PAO1 is one of the most versatile microorganisms in the environment. Despite its ubiquitous presence, no studies have shown the differential expression pattern of its toxin-antitoxins, and persistence related genes. The purpose of the following study is to analyze differential expression of P. aeruginosa PAO1 type II toxin-antitoxins and persistence related genes under different growth conditions and to show how their stoichiometric ratio changes during different growth conditions. Differential expression analysis indicated that the toxins and antitoxin pairs behave differently under different growth conditions. In addition, the genes related to persistence presented relatively consistent differential expression pattern under different growth environment. / Master of Science / Bacterial persistence is one of the main reason for antibiotic tolerance and recurrent infections. Toxin-antitoxin molecules play an important role during bacterial persistence. Change in the expression of toxin, antitoxins, and persistence related genes and the ratio of the toxin to antitoxin mRNA molecules are important for bacterial survival in stressful environments. Pseudomonas aeruginosa PAO1 is one of most ubiquitous bacteria and responsible for recurrent infection in patients with weaker and compromised immunity. This mRNA sequence (RNA-Seq) analysis study of P. aeruginosa PAO1 showed different expression levels of toxin, antitoxin, and persistence related genes in various stressful growth conditions. This expression also showed the different ratios of the toxin to antitoxin mRNA molecules under different stress conditions. These implicate the different hypothetical roles of these toxin and antitoxin molecules in different growth conditions.
|
Page generated in 0.0518 seconds