Spelling suggestions: "subject:"[een] ROCK MECHANICS"" "subject:"[enn] ROCK MECHANICS""
201 |
High temperature mechanical behavior of Maryland diabaseCaristan, Yves Denis January 1981 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Sciences, 1981. / Microfiche copy available in Archives and Science. / Vita. / Includes bibliographies. / by Yves Denis Caristan. / Ph.D.
|
202 |
Dilatancy : further studies in crystalline rockHadley, Kate Hill January 1975 (has links)
Thesis. 1975. Ph.D.--Massachusetts Institute of Technology. Dept. of Earth and Planetary Sciences. / Bibliography: leaves 190-202. / by Kate Hadley. / Ph.D.
|
203 |
Attenuation in igneous rocks at seismic frequenciesCooper, Herman William January 1979 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Sciences, 1979. / Microfiche copy available in Archives and Science. / Bibliography: leaves 118-124. / by Herman William Cooper. / Ph.D.
|
204 |
The mechanical behavior of faulted rock at high temperature and pressure.Stesky, Robert Michael January 1975 (has links)
Thesis. 1975. Ph.D.--Massachusetts Institute of Technology. Dept. of Earth and Planetary Sciences. / Vita. / Includes bibliographical references. / Ph.D.
|
205 |
Electrical resistivity changes in tuffsMorrow, Carolyn Alexandria January 1979 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Science, 1979. / Microfiche copy available in Archives and Science. / Bibliography: leaf 93. / by Carolyn Alexandria Morrow. / M.S.
|
206 |
Experimental study of seismic scattering by a penny-shaped crackScheimer, James Francis January 1979 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Sciences, 1979. / Bibliography: leaves 146-150. / by James Francis Scheimer. / Ph.D.
|
207 |
Electrical resistivity variations and fault creep behavior along strike-slip fault systemsFitterman, David Vincent January 1975 (has links)
Thesis. 1975. Ph.D.--Massachusetts Institute of Technology. Dept. of Earth and Planetary Sciences. / Vita. / Bibliography: leaves 158-162. / by David V. Fitterman. / Ph.D.
|
208 |
The potential of sonic wave propagation in engineering rock classificationSchilizzi, Paul P. G. January 1982 (has links)
Sonic wave methods can be used to provide information on the engineering properties of rocks. The advantages of such techniques include minimal sample preparation, fast site preparation for field tests, reproducible and nondestructive tests, and capability for large scale testing.
During this research an extensive review of the most widely accepted engineering rock classification systems was undertaken and their principles, advantages and disadvantages are presented in detail.
The mathematical equations describing wave propagation through elastic and viscoelastic media are analyzed in order to determine the dynamic parameters most likely related to static properties.
A detailed description of the instrumentation and experimental procedures used for sonic testing is presented. Based on the experimental data, a correlation between the most characteristic static and dynamic properties was established. These relationships can be used to modify existing engineering rock classification systems, by appropriately substituting static properties by the much easier to measure, in the field and in the laboratory, sonic wave parameters. Furthermore, a classification scheme was developed, incorporating information pertaining to the static modulus of elasticity and frequency of joints from sonic wave information. / Master of Science
|
209 |
Time-Dependent Rock Failure at Kartchner Caverns, ArizonaRoth, Karen January 2016 (has links)
Assessing long-term rock stability is an important aspect in the analysis of slopes, dam and bridge foundations, and other infrastructure. Rock behavior over tens to thousands of years must be anticipated when predicting the performance of, for example, an underground containment facility for nuclear waste. At such long time scales, the time dependence of rock failure, typically ignored in short time scale analyses, has a significant effect and must be included in the analysis. Since time-dependent rock behavior is thought to be caused by the subcritical growth of microcracks, a time-dependent analysis should incorporate a method of simulating subcritical crack growth. In this thesis, a rock bridge damage model was developed using the finite element program Abaqus to simulate subcritical crack growth for all three modes of crack tip displacement in three-dimensional rock masses. Since subcritical crack growth is not among the damage initiation and evolution criteria available in Abaqus, its effect was included in the model through the USDFLD user subroutine. Material properties for the damage model were obtained through laboratory fracture toughness testing of Escabrosa limestone from Kartchner Caverns. Tests included the grooved disk test for mode I, the punch-through shear with confining pressure test for mode II, and the circumferentially-notched cylindrical specimen test for mode III. The subcritical crack growth parameters n and A were calculated for all three modes using the constant stress-rate method. Fracture test results were compared with a previous study by Tae Young Ko at the University of Arizona, which tested Coconino sandstone and determined that the subcritical crack growth parameters were consistent among modes. This thesis expands upon Ko's work by adding the characterization of a second rock material in all three modes; results indicate that for Escabrosa limestone the subcritical crack growth parameters are not consistent among modes. Additionally, the Escabrosa limestone composing the caverns ranges from a more homogeneous, even-grained texture to a more heterogeneous texture consisting of coarse-grained veins and solution cavities set in a fine-grained matrix. To determine if the veined regions are more susceptible to fracturing and act as the nuclei of rock bridge failure, the fracture toughness tests were conducted separately for each texture. Results indicate that the more heterogeneous limestone has a higher fracture strength, fracture toughness, and subcritical crack growth index n than the more homogeneous limestone. This is in agreement with previous studies that determined that a more complex and heterogeneous microstructure produces a larger microcrack process zone and a more tortuous crack path, leading to higher fracture energies and larger values of n. Application of the rock bridge damage model to a simplified Kartchner cave room with a single roof block provided visualization of decreasing rock bridge size and produced time-to-failure estimates of 1,251 to 65,850 years. Multiple models were run to study the effect of (i) using material properties from each of the two textures identified in the Escabrosa limestone and (ii) varying the in-situ stress ratio, K. Both the value of K and the choice of Escabrosa texture had a large effect on the estimated time-to-failure, indicating that for future modeling of Kartchner accurate estimation of the in-situ stress ratio is as important as field identification of homogeneous vs. heterogeneous textures.
|
210 |
Combined application of structural geology, the mechanics of discrete media and the analysis of in situ stresses and displacements for the modelling of mechanical behaviour of fractured rock masses / Application combinée de la géologie structurale, de la mécanique des milieux discrets et de l’analyse de contraintes et déplacements in situ à la modélisation du comportement mécanique de massifs rocheux fracturéTran, Thi Thu Hang 22 April 2013 (has links)
Pour étudier le comportement mécanique des massifs rocheux, en prenant en compte le réseau des discontinuités au sein de la roche intacte, cette recherche a pour objectif la représentation du massif par des modèles géométriques basés sur des relevés de terrain et l'analyse de ces modèles par l'utilisation d'outils informatiques adaptés pour les milieux granulaires. Le premier chapitre fait l'état de l'art des roches fracturées, des méthodes numériques de la mécanique des roches et des approches du calcul de structure d'un tunnel. Ces études conduisent à la proposition d'une méthodologie depuis les recherches in situ jusqu'à la modélisation et l'analyse mécanique, présentée dans le deuxième chapitre. Le massif rocheux est d'abord représenté géométriquement par la distribution de ses discontinuités, et l'utilisation du logiciel RESOBLOK basé sur la méthode du Réseau de Fractures Discrètes. Les modèles mécaniques de massifs rocheux sont ensuite présentés à partir des données sur les études de l'histoire du massif, et des mesures faites sur site et en laboratoire. Les modèles numériques en 3D sont analysés par l'utilisation du logiciel LMGC90 basé sur la méthode de la Dynamique des Contacts Non Réguliers. Les premières applications de la méthodologie sont exposées : la création d'une roche numérique pour simuler un essai de compression triaxiale, et la simulation d'une excavation multi phases d'un tunnel au rocher. La méthodologie proposée a été appliquée sur le marbre blanc de Saint Béat (Haute Garonne, France) et les résultats préliminaires sont donnés dans le chapitre trois. Les réponses mécaniques de la roche numérique sont analysées et son comportement est caractérisé. / Aimed at studying the mechanical behaviour of rock mass and considering the presence of the discontinuity network in the intact rock, this research concentrates on how the rock can be represented in suitable geometrical models, on the basis of site measurements, and then appropriately analysed using computer tools developed for the study of granular media. The first chapter deals with a bibliographical study on fractured rock and tunnel engineering. Different computational methods of rock mechanics are introduced. Simultaneously, three principal approaches for tunnel structural design are recalled. These studies lead to the proposition of a methodology from the in situ investigation to in-door modelling and mechanical analysis, presented in the second chapters. The rock mass is first geometrically represented through the distribution of discontinuities in the rock mass and the use of the RESOBLOK code based on the Discrete Fracture Network method. Mechanical models of rock mass are then presented from the data of historical studies on the rock mass and from laboratory and in situ measurements. The 3D computational models are analysed using the LMGC90 based on the Non Smooth Contact Dynamics method. The first two applications of the methodology are introduced: the generation of the numerical rock for the simulation of the triaxial compression test, and the simulation of multi-phase excavation of rock tunnel. The proposed methodology has been applied on the white marble of Saint Béat (Haute Garonne, France) and the initial results are given in the third chapter. The mechanical responses of the numerical rock mass are analysed and the bulk behaviour of the rock is evaluated.
|
Page generated in 0.47 seconds