• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] SCANNING SUSCEPTOMETER USING HALL EFFECT SENSORS TO DETECT DEFECTS IN STEEL SHEETS / [pt] SUSCEPTÔMETRO DE VARREDURA UTILIZANDO SENSORES DE EFEITO HALL PARA DETECÇÃO DE DEFEITOS EM CHAPAS DE AÇO

ELOI BENICIO DE MELO JUNIOR 08 June 2020 (has links)
[pt] Instrumentos de varredura magnética em estruturas, componentes e materiais têm sido objeto de pesquisa científica e são potenciais protótipos para uso na indústria, sobretudo em inspeção não destrutiva, para identificar defeitos em estruturas metálicas sujeitas a condições extremas como altas temperaturas, pressão e forte tensão. Essas condições podem levar à falhas dessas estruturas comprometendo sua operação, acarretando prejuízos e possíveis acidentes. Nesse sentido, construímos um instrumento para varredura da resposta magnética em placas de aço com defeitos utilizando dois sistemas de medição. No primeiro sistema utilizamos um equipamento comercial: Gaussímetro da marca F.W. BELL (modelo 9950), com três sensores de efeito Hall perpendiculares entre si. No segundo, um gradiômetro construído no Laboratório de Instrumentação do Departamento de Física da PUC-Rio composto de dois sensores de efeito Hall da marca Melexis (modelo 90215). Para a varredura de ambos os sistemas de medição foram utilizados dois atuadores lineares da marca Zaber (modelo T-LLS260C). Com o instrumento construído foi possível identificar defeitos manufaturados por eletroerosão em placas de aço SAE 1020. O segundo sistema de medição se mostrou mais eficiente em detectar defeitos com diâmetros da ordem de 0,90 mm e 10 μm de profundidade. Também construímos um sistema de filtros em uma placa de circuito impresso para atenuar o ruído presente. A partir da análise de sinal-ruído notou-se que o circuito foi eficaz e permitiu uma melhor identificação dos defeitos. Para reforçar a aplicação desse equipamento na pesquisa científica e na indústria, desenvolvemos uma rotina em MATLAB para estimar a profundidade dos defeitos e obtivemos resultados com erro de 3,54 por cento. / [en] Magnetic scanning instruments in structures, components, and materials have been the object of scientific research and are potential prototypes to be used in the industry, especially in non-destructive inspection to identify defects in metal structures subject to extreme conditions, such as high temperatures, pressure, and high tension. These conditions may lead to the failure of these structures, affecting their operation and resulting in losses and possible accidents. In this sense, we developed an instrument for scanning the magnetic response in defective steel plates using two measurement systems. In the first system, we used commercial equipment: Gaussmeter (F.W.BELL, model 9950), with three Hall-effect sensors perpendicular to each other, and in the second one, a gradiometer, composed of two Hall-effect sensors (Melexis, model 90215), developed at the Instrumentation Laboratory of the Physics Department of the PUC-Rio. For scanning both measurement systems, two linear actuators (Zaber, model T-LLS260C) were used. The instrument allows us to identify defects caused by electrical discharge machining on SAE 1020 steel plates. The second measurement system proved to be more efficient in detecting defects with diameters in the order of 0.90 mm and 10 μm in depth. A filter system was also built on a printed circuit board to attenuate noise. The signal-noise analysis showed that the circuit was effective and made possible a better identification of the defects. To reinforce the application of this instrument in scientific research and industry, a routine in MATLAB was developed to estimate the depth of the defects, resulting in an error of 3.54 per cent.
2

Microextrusão de peças aplicadas a materiais ferrosos e não ferrosos

Milanez, Alexandre January 2012 (has links)
Esta tese apresenta o estudo sobre microconformação, no caso microextrusão de quatro materiais diferentes, um aço SAE 1020, um aço inoxidável AISI 304, um alumínio AA6531 e um latão ASTM C34000. Para avaliar o efeito do tamanho da peça sobre o processo de microextrusão, dois tamanhos de corpos de prova foram utilizados, um com ∅ 4 mm e outro com ∅ 1 mm. Para cada tamanho de corpo de prova, três ângulos de extrusão foram utilizados, 30°, 45° e 60°. A primeira parte do trabalho se resume a caracterização dos materiais, com analise química e metalográfica. Após a caracterização dos materiais, as curvas de escoamento através do ensaio de compressão utilizando dois tamanhos de corpos de prova foram feitos em todos os materiais. O atrito foi determinado utilizando o ensaio de anel de atrito com três tamanhos diferentes de corpos de prova. As curvas de calibração foram feitas utilizando o software SIMUFACT. Os ensaios de extrusão foram feitos em uma máquina de ensaio universal com capacidade de captura de dados como força e deslocamento. Um modelo matemático foi utilizado para comparar a força de extrusão calculada com o medido no processo. Os resultados indicam que as curvas de escoamento de tamanho macro podem ser aplicadas a peças de tamanho meso. O atrito medido pelo ensaio de anel de atrito mostrou que os valores de atrito de tamanho micro tem um pequeno valor maior que para tamanho macro. Os valores de força de extrusão calculada e medido no ensaio para peças de tamanho meso tem boa aproximação com diferença de 3,2% para o aço inoxidável. Para peça de tamanho micro, a diferença entre o valor medido e o calculado aumenta chegando a diferença de 995% para o corpos de prova de aço comum. / This thesis presents the study about microforming, in this case microextrusion of the four different materials, an SAE 1020 steel, an AISI 304 stainless steel, an AA6531 aluminum and a C34000 brass. To evaluate the size effect about microextrusion process, two sizes of specimens were used, with a ∅ 4 mm and another with ∅ 1 mm. For each size of specimen, three extrusion angles were used, 30 °, 45 ° and 60 °. The first part of the work was to materials characterizations with chemical and metallographic analysis. Following the materials characterization, the flow stress curves was made using the compression test with two sizes of specimens. The friction was determined using the friction ring test with the three different size. Calibration curves were performed using the software SIMUFACT . The extrusion tests were performed in a universal testing machine capable of capturing such as force and displacement data. A mathematical model was used to compare the extrusion force it was calculated and the force measured in microextrusion. The results indicate that the flow stress curves of macro size can be applied to meso sizes. The ring friction test indicate that the friction values of the micro size has a small value greater than macro size. The extrusion force calculated and measured in the test to meso size has good approximation with a difference of 3.2% in the stainless steel. To pieces of the micro size, the difference between the measured and calculated force increases 995% for the samples of SAE 1020 steel.
3

Microextrusão de peças aplicadas a materiais ferrosos e não ferrosos

Milanez, Alexandre January 2012 (has links)
Esta tese apresenta o estudo sobre microconformação, no caso microextrusão de quatro materiais diferentes, um aço SAE 1020, um aço inoxidável AISI 304, um alumínio AA6531 e um latão ASTM C34000. Para avaliar o efeito do tamanho da peça sobre o processo de microextrusão, dois tamanhos de corpos de prova foram utilizados, um com ∅ 4 mm e outro com ∅ 1 mm. Para cada tamanho de corpo de prova, três ângulos de extrusão foram utilizados, 30°, 45° e 60°. A primeira parte do trabalho se resume a caracterização dos materiais, com analise química e metalográfica. Após a caracterização dos materiais, as curvas de escoamento através do ensaio de compressão utilizando dois tamanhos de corpos de prova foram feitos em todos os materiais. O atrito foi determinado utilizando o ensaio de anel de atrito com três tamanhos diferentes de corpos de prova. As curvas de calibração foram feitas utilizando o software SIMUFACT. Os ensaios de extrusão foram feitos em uma máquina de ensaio universal com capacidade de captura de dados como força e deslocamento. Um modelo matemático foi utilizado para comparar a força de extrusão calculada com o medido no processo. Os resultados indicam que as curvas de escoamento de tamanho macro podem ser aplicadas a peças de tamanho meso. O atrito medido pelo ensaio de anel de atrito mostrou que os valores de atrito de tamanho micro tem um pequeno valor maior que para tamanho macro. Os valores de força de extrusão calculada e medido no ensaio para peças de tamanho meso tem boa aproximação com diferença de 3,2% para o aço inoxidável. Para peça de tamanho micro, a diferença entre o valor medido e o calculado aumenta chegando a diferença de 995% para o corpos de prova de aço comum. / This thesis presents the study about microforming, in this case microextrusion of the four different materials, an SAE 1020 steel, an AISI 304 stainless steel, an AA6531 aluminum and a C34000 brass. To evaluate the size effect about microextrusion process, two sizes of specimens were used, with a ∅ 4 mm and another with ∅ 1 mm. For each size of specimen, three extrusion angles were used, 30 °, 45 ° and 60 °. The first part of the work was to materials characterizations with chemical and metallographic analysis. Following the materials characterization, the flow stress curves was made using the compression test with two sizes of specimens. The friction was determined using the friction ring test with the three different size. Calibration curves were performed using the software SIMUFACT . The extrusion tests were performed in a universal testing machine capable of capturing such as force and displacement data. A mathematical model was used to compare the extrusion force it was calculated and the force measured in microextrusion. The results indicate that the flow stress curves of macro size can be applied to meso sizes. The ring friction test indicate that the friction values of the micro size has a small value greater than macro size. The extrusion force calculated and measured in the test to meso size has good approximation with a difference of 3.2% in the stainless steel. To pieces of the micro size, the difference between the measured and calculated force increases 995% for the samples of SAE 1020 steel.
4

Microextrusão de peças aplicadas a materiais ferrosos e não ferrosos

Milanez, Alexandre January 2012 (has links)
Esta tese apresenta o estudo sobre microconformação, no caso microextrusão de quatro materiais diferentes, um aço SAE 1020, um aço inoxidável AISI 304, um alumínio AA6531 e um latão ASTM C34000. Para avaliar o efeito do tamanho da peça sobre o processo de microextrusão, dois tamanhos de corpos de prova foram utilizados, um com ∅ 4 mm e outro com ∅ 1 mm. Para cada tamanho de corpo de prova, três ângulos de extrusão foram utilizados, 30°, 45° e 60°. A primeira parte do trabalho se resume a caracterização dos materiais, com analise química e metalográfica. Após a caracterização dos materiais, as curvas de escoamento através do ensaio de compressão utilizando dois tamanhos de corpos de prova foram feitos em todos os materiais. O atrito foi determinado utilizando o ensaio de anel de atrito com três tamanhos diferentes de corpos de prova. As curvas de calibração foram feitas utilizando o software SIMUFACT. Os ensaios de extrusão foram feitos em uma máquina de ensaio universal com capacidade de captura de dados como força e deslocamento. Um modelo matemático foi utilizado para comparar a força de extrusão calculada com o medido no processo. Os resultados indicam que as curvas de escoamento de tamanho macro podem ser aplicadas a peças de tamanho meso. O atrito medido pelo ensaio de anel de atrito mostrou que os valores de atrito de tamanho micro tem um pequeno valor maior que para tamanho macro. Os valores de força de extrusão calculada e medido no ensaio para peças de tamanho meso tem boa aproximação com diferença de 3,2% para o aço inoxidável. Para peça de tamanho micro, a diferença entre o valor medido e o calculado aumenta chegando a diferença de 995% para o corpos de prova de aço comum. / This thesis presents the study about microforming, in this case microextrusion of the four different materials, an SAE 1020 steel, an AISI 304 stainless steel, an AA6531 aluminum and a C34000 brass. To evaluate the size effect about microextrusion process, two sizes of specimens were used, with a ∅ 4 mm and another with ∅ 1 mm. For each size of specimen, three extrusion angles were used, 30 °, 45 ° and 60 °. The first part of the work was to materials characterizations with chemical and metallographic analysis. Following the materials characterization, the flow stress curves was made using the compression test with two sizes of specimens. The friction was determined using the friction ring test with the three different size. Calibration curves were performed using the software SIMUFACT . The extrusion tests were performed in a universal testing machine capable of capturing such as force and displacement data. A mathematical model was used to compare the extrusion force it was calculated and the force measured in microextrusion. The results indicate that the flow stress curves of macro size can be applied to meso sizes. The ring friction test indicate that the friction values of the micro size has a small value greater than macro size. The extrusion force calculated and measured in the test to meso size has good approximation with a difference of 3.2% in the stainless steel. To pieces of the micro size, the difference between the measured and calculated force increases 995% for the samples of SAE 1020 steel.

Page generated in 0.0441 seconds