• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 20
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 102
  • 49
  • 21
  • 19
  • 19
  • 12
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Dynamic analysis of non-steady flow in granular dense phase pneumatic conveying

Tan, Shengming January 2009 (has links)
Research Doctorate - Doctor of Philosophy (PhD) / Slug flow dense phase pneumatic conveying can be a most reliable, efficient method for handling a remarkably wide range of dry bulk solids. Models for pressure drop over slugs in the low-velocity slug-flow pneumatic conveying by many researchers only took the force balance into account with the pressure drop. However, the nature of the slug flow pneumatic conveying is discontinuous and seldom becomes steady during the conveying period which requires further investigation. The fundamental understanding to gas/slug interaction in this thesis is that, by being a dynamic system, the faster a slug moves at a speed, the larger the space is left behind the slug. The gas feeding into the conveying system has to fill the increased space first then permeates through the slug and provides a push force on the slug. With gas permeation rate defined by the permeability factor, the derivative of the upstream pressure based on the air mass conservation law has been developed. For a given conveying system, the pressure in the pneumatic conveying system can be solved for steady conditions or numerically simulated for unsteady conditions. Parametric analysis have been conducted for pressure drop factors and found that slug velocity is the major reason causing the pressure fluctuation in the pneumatic conveying system. To verify the pressure drop model, this model has been applied to single slug cases and compared with experimental results for five different bulk materials, showing good results. Three distinct zones, i.e. Fixed Bed Zone, Initial Slug Zone and Reliable Slug Zone, have been found to exist in the relationship between slip velocity and pressure gradient. Lastly this model has also been applied to a multiple slug system under uniform conditions. In all, the fundamental gas pressure/pressure drop model developed in this thesis approaches slug flow conveying from a different viewpoint from the traditional momentum and material stress models developed by previous researchers, and provides a way of assessing the non-steady flow behaviour in granular dense phase pneumatic conveying. This model not only attains a better understanding of slug flow behaviour but also increases the accuracy of predicting the parameters.
32

Signal propagation in a cell-free system purinergic signaling among mucous secretory granules from the slug Ariolmax columbianus /

Van Der Ven, Peter F. January 1996 (has links)
Thesis (Ph. D.)--University of Washington, 1996. / eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
33

Signal propagation in a cell-free system purinergic signaling among mucous secretory granules from the slug Ariolmax columbianus /

Van Der Ven, Peter F. January 1996 (has links)
Thesis (Ph. D.)--University of Washington, 1996. / Includes bibliographical references.
34

Monitoring gas void fraction in two-phase flow with acoustic emission

Addali, Abdulmajid January 2010 (has links)
The two-phase gas/liquid flow phenomenon can be encountered over a range of gas and liquid flow rates in the chemical engineering industry, particularly in oil and gas production transportation pipelines. Monitoring and measurement of their characteristics, such as the gas void fraction, are necessary to minimise the disruption of downstream process facilities. Thus, over the last decade, the investigation, development and use of multiphase flow metering system have been a major focus for the industry worldwide. However, these meters suffer from several limitations in some flow conditions such as Slug flow regime. This research presents experimental results correlating Acoustic Emission measurements with Gas Void Fraction (GVF) in a two-phase air / water flow. A unique experimental facility was modified to accommodate an investigation into the applicability of the Acoustic Emission (AE) technology in monitoring two-phase gas\liquid flow. The testing facility allowed for investigations over a range of superficial liquid velocities (0.3 to 2.0 ms-1) and superficial gas velocities (0.2 to 1.4 ms-1). The influence of several variables such as temperature, viscosity and surface roughness were also investigated. Measurements of AE for varying gas void fractions were compared to conductive probe measurements and results showed a direct correlation between the AE energy and the gas void fraction. It is concluded that the GVF can be determined by measurement of Acoustic Emission and this forms the major contribution of this thesis.
35

Experimental and modelling studies of transient slug flow

King, Matthew James Stuart January 1998 (has links)
No description available.
36

Experimental investigation and CFD simulation of slug flow in horizontal channels

Prasser, Horst-Michael, Sühnel, Tobias, Vallée, Christophe, Höhne, Thomas January 2007 (has links)
For the investigation of stratified two-phase flow, two horizontal channels with rectangular cross-section were built at Forschungszentrum Dresden-Rossendorf (FZD). The channels allow the investigation of air/water co-current flows, especially the slug behaviour, at atmospheric pressure and room temperature. The test-sections are made of acrylic glass, so that optical techniques, like high-speed video observation or particle image velocimetry (PIV), can be applied for measurements. The rectangular cross-section was chosen to provide better observation possibilities. Moreover, dynamic pressure measurements were performed and synchronised with the high-speed camera system. CFD post-test simulations of stratified flows were performed using the code ANSYS CFX. The Euler-Euler two fluid model with the free surface option was applied on grids of minimum 4∙105 control volumes. The turbulence was modelled separately for each phase using the k-ω based shear stress transport (SST) turbulence model. The results compare well in terms of slug formation, velocity, and breaking. The qualitative agreement between calculation and experiment is encouraging and shows that CFD can be a useful tool in studying horizontal two-phase flow. Furthermore, CFD pre-test calculations were done to show the possibility of slug flow generation in a real geometry and at relevant parameters for nuclear reactor safety. The simulation was performed on a flat model representing the hot-leg of the German Konvoi-reactor, with water and saturated steam at 50 bar and 263.9°C. The results of the CFD-calculation show wave generation in the horizontal part of the hot-leg which grow to slugs in the region of the bend.
37

Etude comparative des méthodes d'origine particulaire SPH et LBM pour la simulation d'écoulements polyphasiques intermittents dans des conduites / Comparative study of particle-based methods SPH and LBM for the simulation of multiphase slug flows in pipes

Douillet-Grellier, Thomas 07 October 2019 (has links)
L’objectif de cette thèse est d’étudier les apports et les limitations de deux méthodes d’origine particulaire, SPH et LBM, dans le cadre de la simulation des écoulements à bouchons dans des conduites. Dans l’industrie pétrolière, ce type d’écoulement, que l’on retrouve par exemple dans les pipelines qui acheminent le pétrole et le gaz jusqu’aux raffineries, est connu pour endommager les installations et pour réduire l’efficacité du transport des fluides. Il est donc important de bien comprendre leur formation. Nous avons donc implémenté ces deux méthodes, ainsi que leurs variantes polyphasiques, et avons mené une campagne de validation et de comparaison afin de sélectionner la méthode la plus adéquate, pour poursuivre ensuite avec des simulations de cas plus appliqués et réalistes. Les contributions présentées se concentrent principalement sur trois axes. Tout d’abord, il a fallu construire les codes de calcul nécéssaires, les valider puis comparer des différentes formulations polyphasiques disponibles pour SPH et LBM. Ensuite, nous avons développé des conditions aux limites d’entrée/sortie adaptées au contexte polyphasique pour être en mesure d’injecter les fluides avec des vitesses imposées et de ler évacuer du domaine avec un pression donnée. Enfin, nous avons simulé différents cas d’écoulements à bouchons académiques avec SPH et LBM, puis sur des cas appliqués avec des géométries réalistes et des ratios de densité et de viscosité de type air/eau avec SPH seulement. / The main objective of this thesis is to study the contributions and limitations of two particle- based methods, SPH and LBM, for the simulation of slug flows in pipes. In the petroleum industry, these flow regimes, found for example during the transportation of oil and gas from reservoirs to refinery facilities through pipelines, are highly undesirable because they are known to damage facilities and to reduce flow efficiency. Therefore, it is important to understand its formation. We have implemented both methods, as well as their multiphase variants, and have led a validation and comparison campaign in order to to select the most suited method and to continue with simulations of more applied and realistic cases. The main contributions of this work can summarized in 3 points. First, we had to write the necessary computation codes, validate them and compare the different multiphase formulations available for SPH and LBM. Then, we have developed inlet/outlet boundary conditions adapted to the multiphase context so that we are able to inject fluids with prescribed velocities and let them exit he domain with a given pressure. Finally, we have simulated different academic test cases of slug flows with SPH and LBM and then on applied cases with realistic geometries and air-water like density and viscosity ratios with SPH only.
38

Experimental study of corrosion rate and slug flow characteristics in horizontal, multiphase pipeline

Zhou, Xianling January 1993 (has links)
No description available.
39

Study on mass transfer and turbulence in large pipe flow using limiting current density technique

Xie, Qingqing January 1997 (has links)
No description available.
40

Slug flow characteristics and corrosion rates in inclined high pressure multiphase flow pipes

Maley, Jeff January 1997 (has links)
No description available.

Page generated in 0.0418 seconds