Spelling suggestions: "subject:"[een] SMOOTH TRANSITION MODELS"" "subject:"[enn] SMOOTH TRANSITION MODELS""
1 |
Testing the unit root hypothesis in nonlinear time series and panel modelsSandberg, Rickard January 2004 (has links)
The thesis contains the four chapters: Testing parameter constancy in unit root autoregressive models against continuous change; Dickey-Fuller type of tests against nonlinear dynamic models; Inference for unit roots in a panel smooth transition autoregressive model where the time dimension is fixed; Testing unit roots in nonlinear dynamic heterogeneous panels. In Chapter 1 we derive tests for parameter constancy when the data generating process is non-stationary against the hypothesis that the parameters of the model change smoothly over time. To obtain the asymptotic distributions of the tests we generalize many theoretical results, as well as new are introduced, in the area of unit roots . The results are derived under the assumption that the error term is a strong mixing. Small sample properties of the tests are investigated, and in particular, the power performances are satisfactory. In Chapter 2 we introduce several test statistics of testing the null hypotheses of a random walk (with or without drift) against models that accommodate a smooth nonlinear shift in the level, the dynamic structure, and the trend. We derive analytical limiting distributions for all tests. Finite sample properties are examined. The performance of the tests is compared to that of the classical unit root tests by Dickey-Fuller and Phillips and Perron, and is found to be superior in terms of power. In Chapter 3 we derive a unit root test against a Panel Logistic Smooth Transition Autoregressive (PLSTAR). The analysis is concentrated on the case where the time dimension is fixed and the cross section dimension tends to infinity. Under the null hypothesis of a unit root, we show that the LSDV estimator of the autoregressive parameter in the linear component of the model is inconsistent due to the inclusion of fixed effects. The test statistic, adjusted for the inconsistency, has an asymptotic normal distribution whose first two moments are calculated analytically. To complete the analysis, finite sample properties of the test are examined. We highlight scenarios under which the traditional panel unit root tests by Harris and Tzavalis have inferior or reasonable power compared to our test. In Chapter 4 we present a unit root test against a non-linear dynamic heterogeneous panel with each country modelled as an LSTAR model. All parameters are viewed as country specific. We allow for serially correlated residuals over time and heterogeneous variance among countries. The test is derived under three special cases: (i) the number of countries and observations over time are fixed, (ii) observations over time are fixed and the number of countries tend to infinity, and (iii) first letting the number of observations over time tend to infinity and thereafter the number of countries. Small sample properties of the test show modest size distortions and satisfactory power being superior to the Im, Pesaran and Shin t-type of test. We also show clear improvements in power compared to a univariate unit root test allowing for non-linearities under the alternative hypothesis. / Diss. Stockholm : Handelshögskolan, 2004
|
2 |
[en] VARIABLE SELECTION FOR LINEAR AND SMOOTH TRANSITION MODELS VIA LASSO: COMPARISONS, APPLICATIONS AND NEW METHODOLOGY / [pt] SELEÇÃO DE VARIÁVEIS PARA MODELOS LINEARES E DE TRANSIÇÃO SUAVE VIA LASSO: COMPARAÇÕES, APLICAÇÕES E NOVA METODOLOGIACAMILA ROSA EPPRECHT 10 June 2016 (has links)
[pt] A seleção de variáveis em modelos estatísticos é um problema importante,
para o qual diferentes soluções foram propostas. Tradicionalmente, pode-se
escolher o conjunto de variáveis explicativas usando critérios de informação ou
informação à priori, mas o número total de modelos a serem estimados cresce
exponencialmente a medida que o número de variáveis candidatas aumenta. Um
problema adicional é a presença de mais variáveis candidatas que observações.
Nesta tese nós estudamos diversos aspectos do problema de seleção de variáveis.
No Capítulo 2, comparamos duas metodologias para regressão linear:
Autometrics, que é uma abordagem geral para específico (GETS) baseada em
testes estatísticos, e LASSO, um método de regularização. Diferentes cenários
foram contemplados para a comparação no experimento de simulação, variando o
tamanho da amostra, o número de variáveis relevantes e o número de variáveis
candidatas. Em uma aplicação a dados reais, os métodos foram comparados para a
previsão do PIB dos EUA. No Capítulo 3, introduzimos uma metodologia para
seleção de variáveis em modelos regressivos e autoregressivos de transição suave
(STR e STAR) baseada na regularização do LASSO. Apresentamos uma
abordagem direta e uma escalonada (stepwise). Ambos os métodos foram testados
com exercícios de simulação exaustivos e uma aplicação a dados genéticos.
Finalmente, no Capítulo 4, propomos um critério de mínimos quadrados
penalizado baseado na penalidade l1 do LASSO e no CVaR (Conditional Value
at Risk) dos erros da regressão out-of-sample. Este é um problema de otimização
quadrática resolvido pelo método de pontos interiores. Em um estudo de
simulação usando modelos de regressão linear, mostra-se que o método proposto
apresenta performance superior a do LASSO quando os dados são contaminados
por outliers, mostrando ser um método robusto de estimação e seleção de
variáveis. / [en] Variable selection in statistical models is an important problem, for which
many different solutions have been proposed. Traditionally, one can choose the
set of explanatory variables using information criteria or prior information, but the
total number of models to evaluate increases exponentially as the number of
candidate variables increases. One additional problem is the presence of more
candidate variables than observations. In this thesis we study several aspects of
the variable selection problem. First, we compare two procedures for linear
regression: Autometrics, which is a general-to-specific (GETS) approach based on
statistical tests, and LASSO, a shrinkage method. Different scenarios were
contemplated for the comparison in a simulation experiment, varying the sample
size, the number of relevant variables and the number of candidate variables. In a
real data application, we compare the methods for GDP forecasting. In a second
part, we introduce a variable selection methodology for smooth transition
regressive (STR) and autoregressive (STAR) models based on LASSO
regularization. We present a direct and a stepwise approach. Both methods are
tested with extensive simulation exercises and an application to genetic data.
Finally, we introduce a penalized least square criterion based on the LASSO l1-
penalty and the CVaR (Conditional Value at Risk) of the out-of-sample
regression errors. This is a quadratic optimization problem solved by interior point
methods. In a simulation study in a linear regression framework, we show that the
proposed method outperforms the LASSO when the data is contaminated by
outliers, showing to be a robust method of estimation and variable selection.
|
Page generated in 0.0589 seconds