• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 7
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] OPTIMIZATION OF A PORTFOLIO OF ELECTRIC ENERGY SWAPS IN BRAZIL USING THE OMEGA MEASUREMENT WITH CVAR CONSTRAINTS / [pt] OTIMIZAÇÃO DE UMA CARTEIRA DE SWAPS DE ENERGIA ELÉTRICA NO BRASIL, USANDO A MEDIDA ÔMEGA COM RESTRIÇÃO DE CVAR

IAGO EMANUEL BARBOSA DA COSTA VEIGA 17 January 2013 (has links)
[pt] O mercado brasileiro de energia elétrica é composto basicamente de matrizes hidroelétricas e termoelétricas, sendo que seu fornecimento pode ser contratado em dois ambientes, um de contratação regulamentada e outro livre. Dessa forma o apreçamento da energia é algo complexo e com incertezas, pois seu modelo leva em consideração comportamentos de afluências futuras, além de estimar a utilização de termoelétricas, que possuem fontes de energia mais caras. No Brasil, existem quatro submercados que podem ter preços divergentes. Algumas comercializadoras se utilizam dessa diferença buscando aferir ganhos extraordinários fazendo Swaps. Essa operação consiste em compra e venda de uma mesma quantidade de energia com liquidação fixada em uma determinada data com o preço à vista entre diferentes submercados. Essas empresas utilizam medidas de otimização de carteiras e controle de risco para fazerem operações ótimas, onde há maior probabilidade de maximizar o lucro, tendo o prejuízo máximo sob controle. Esse trabalho tem como objetivo encontrar a carteira de Swaps de energia que maximiza a medida Ômega, usada como avaliador de desempenho, tendo uma expectativa de lucro e com uma restrição de risco com um limite para o Conditional Value at Risk (CVaR), assim auxiliando as comercializadoras a maximizarem seu lucro não ultrapassando seu limite de risco. O estudo levou em consideração valores de previsão reais feitos por modelos fornecidos por órgãos especializados, levando em consideração os dados para os anos de 2012 e 2013 sendo estudadas todas as combinações possíveis de Swaps para a composição da carteira ótima para cada um dos anos estudados. A carteira ótima foi encontrada, no entanto, pode-se concluir que sua composição varia de acordo com os dados simulados não existindo assim uma carteira ótima única devendo essa ser calculada caso a caso. / [en] The Brazilian energy market is composed basically by hydroelectric and thermoelectric energy sources, which can be contracted in two different environments, one regulated and the other free. In this way, the pricing of energy is something complex and uncertain, because its model takes in consideration the behavior of future water affluences, besides estimating the more expensive thermal units. In Brazil, there are four submarkets that have diverging prices and some traders use this difference to reach extraordinary gains by entering into Swap operations. This operation consists of buying and selling a same amount of energy with its liquidation fixed at pre-determined date, at a spot price between different submarkets. These companies use portfolio optimization and risk management methods to reach optimal operations, in which there is a greater probability of maximizing profits, while measuring risk. This study aim to find the portfolio of Swaps that`s maximize the Omega measurement as the performance measurement, has a estimated profit and uses the conditional Value at Risk (CVaR) as the restriction for the risk that can be taken. Its objective is to help traders maximize their profit without exceeding their risk limit. The study took in consideration values from real previsions made by models provided by specialized agencies, taking in consideration all the data for the years of 2012 and 2013, with all the combinations of Swaps being studied. The optimal portfolio was achieved in both cases however, it`s possible to conclude that this composition varies according the input data, not existing thereby a unique optimal portfolio should that be calculated by case.
2

[pt] MODELO DE OTIMIZAÇÃO ESTOCÁSTICA PARA SELEÇÃO DE PORTFÓLIO DE RENDA FIXA NO MERCADO BRASILEIRO / [en] STOCHASTIC OPTIMIZATION MODEL FOR PORTFOLIO SELECTION OF BRAZILIAN FIXED-INCOME SECURITIES

MARLON HENRIQUE ZAVAGLI CORREA 08 October 2015 (has links)
[pt] A seleção de um portfolio de renda fixa é um problema comumente enfrentado pelos agentes do mercado financeiro. A alocação ótima destes ativos melhora o nível de rentabilidade e lucratividade da instituição. Um dos trade-offs rotineiramente encontrado pelos gestores destas carteiras é decidir entre a compra de títulos pré-fixados e pós-fixados de curto prazo ou longo prazo, sendo que estes últimos no geral rendem mais devido ao prêmio de risco. Tais títulos, apesar de terem a sua rentabilidade já definida no momento da compra, podem ser vendidos a qualquer momento e sua nova rentabilidade estará sujeitas às marcações a mercado. O retorno da carteira composta por estes títulos é portanto uma variável aleatória que torna necessário o controle dos riscos de perda deste portfolio. O presente estudo teve por objetivo desenvolver um modelo de otimização da rentabilidade de uma carteira composta somente por títulos prefixados do tesouro nacional, com restrições ao nível de risco expresso através do Conditional Value at Risk. Após tal, foram realizados backtests para medir o desempenho do modelo e comparar a sua rentabilidade com o índice CDI. Os testes mostraram que o modelo apresenta resultados bons em rentabilidade e resultados satisfatórios em termos de controle de risco. / [en] Fixed-income portfolio selection is a common problem faced by financial market agents. The optimal allocation of these assets improves the profitability of institutions. A trade-off routinely found by the managers of these portfolios is deciding between buying floating rate securities or short-term or long-term fixed-rate securities, while the latter generally has a higher yield due to risk premium. Despite fixed rate securities have their return already set at the moment of purchase, they can be sold at any time and the new return will be subject to the current market prices. Since the return of a portfolio holding these securities is a random variable, we argue for the importance of a risk assessment and control a fixed income security portfolio. This study aimmed to develop an optimization model of return with a portfolio composed only on fixed and floating rate bonds from Brazil s sovereign treasury, using risk restrictions expressed on the Conditional Value at Risk measure. After that, backtestswere performed to measure model efficiency and compare its return to the Brazilian s Interbank rate. The tests have shown good results in profitability and risk control.
3

[en] FINANCIAL OPTIMIZATION OF A WIND FARM IN THE BRAZILIAN ENERGY MARKET / [pt] OTIMIZAÇÃO FINANCEIRA DE PARQUE EÓLICO NO MERCADO DE ENERGIA DO BRASIL

FERNANDO ORMONDE TEIXEIRA 23 March 2017 (has links)
[pt] Investigam-se modelos econométricos que sejam capazes de efetuar uma previsão mensal de vento em um parque eólico no Ceará. São testados modelos da família ARMA que consigam capturar a sazonalidade inerente ao movimento das massas de ar e que tragam benefícios aos empreendimentos eólicos localizados no Brasil e na região. Para tal, a previsão de vento é transformada em previsão de geração de energia. Em seguida, é elaborada uma metodologia para encontrar a melhor estratégia de ação a qual maximize o resultado da empresa tendo-se como meta o lucro e restrições de Value at Risk (VaR) e Conditional Value at Risk (CVaR). Os possíveis resultados de geração de energia são simulados concomitantemente com a simulação de preços de liquidação (PLD). / [en] We investigate econometric models that are capable of predicting the wind speed in a wind farm located in the state of Ceará, Brazil. ARMA models are tested to try to capture the seasonality inherent to the wind and that bring benefits to the firms operating wind farms in the region. Wind is converted in power generation to allow predictions to be more precise. Then, a methodology is created to find the best strategy, the one that maximizes the firm s profit. An optimization is made with VaR and CVaR as constraints. The simulated results of power generation are then put together with a simulation of liquidation s price (PLD).
4

[en] VARIABLE SELECTION FOR LINEAR AND SMOOTH TRANSITION MODELS VIA LASSO: COMPARISONS, APPLICATIONS AND NEW METHODOLOGY / [pt] SELEÇÃO DE VARIÁVEIS PARA MODELOS LINEARES E DE TRANSIÇÃO SUAVE VIA LASSO: COMPARAÇÕES, APLICAÇÕES E NOVA METODOLOGIA

CAMILA ROSA EPPRECHT 10 June 2016 (has links)
[pt] A seleção de variáveis em modelos estatísticos é um problema importante, para o qual diferentes soluções foram propostas. Tradicionalmente, pode-se escolher o conjunto de variáveis explicativas usando critérios de informação ou informação à priori, mas o número total de modelos a serem estimados cresce exponencialmente a medida que o número de variáveis candidatas aumenta. Um problema adicional é a presença de mais variáveis candidatas que observações. Nesta tese nós estudamos diversos aspectos do problema de seleção de variáveis. No Capítulo 2, comparamos duas metodologias para regressão linear: Autometrics, que é uma abordagem geral para específico (GETS) baseada em testes estatísticos, e LASSO, um método de regularização. Diferentes cenários foram contemplados para a comparação no experimento de simulação, variando o tamanho da amostra, o número de variáveis relevantes e o número de variáveis candidatas. Em uma aplicação a dados reais, os métodos foram comparados para a previsão do PIB dos EUA. No Capítulo 3, introduzimos uma metodologia para seleção de variáveis em modelos regressivos e autoregressivos de transição suave (STR e STAR) baseada na regularização do LASSO. Apresentamos uma abordagem direta e uma escalonada (stepwise). Ambos os métodos foram testados com exercícios de simulação exaustivos e uma aplicação a dados genéticos. Finalmente, no Capítulo 4, propomos um critério de mínimos quadrados penalizado baseado na penalidade l1 do LASSO e no CVaR (Conditional Value at Risk) dos erros da regressão out-of-sample. Este é um problema de otimização quadrática resolvido pelo método de pontos interiores. Em um estudo de simulação usando modelos de regressão linear, mostra-se que o método proposto apresenta performance superior a do LASSO quando os dados são contaminados por outliers, mostrando ser um método robusto de estimação e seleção de variáveis. / [en] Variable selection in statistical models is an important problem, for which many different solutions have been proposed. Traditionally, one can choose the set of explanatory variables using information criteria or prior information, but the total number of models to evaluate increases exponentially as the number of candidate variables increases. One additional problem is the presence of more candidate variables than observations. In this thesis we study several aspects of the variable selection problem. First, we compare two procedures for linear regression: Autometrics, which is a general-to-specific (GETS) approach based on statistical tests, and LASSO, a shrinkage method. Different scenarios were contemplated for the comparison in a simulation experiment, varying the sample size, the number of relevant variables and the number of candidate variables. In a real data application, we compare the methods for GDP forecasting. In a second part, we introduce a variable selection methodology for smooth transition regressive (STR) and autoregressive (STAR) models based on LASSO regularization. We present a direct and a stepwise approach. Both methods are tested with extensive simulation exercises and an application to genetic data. Finally, we introduce a penalized least square criterion based on the LASSO l1- penalty and the CVaR (Conditional Value at Risk) of the out-of-sample regression errors. This is a quadratic optimization problem solved by interior point methods. In a simulation study in a linear regression framework, we show that the proposed method outperforms the LASSO when the data is contaminated by outliers, showing to be a robust method of estimation and variable selection.
5

[en] TACTICAL ASSET ALLOCATION FOR OPEN PENSION FUNDS USING MULTI-STAGE STOCHASTIC PROGRAMMING / [pt] ALOCAÇÃO TÁTICA DE ATIVOS PARA EMPRESAS DE PREVIDÊNCIA COMPLEMENTAR VIA PROGRAMAÇÃO ESTOCÁSTICA MULTIESTÁGIO

THIAGO BARATA DUARTE 11 July 2016 (has links)
[pt] Uma importante questão que se coloca para entidades abertas de previdência complementar e sociedades seguradoras que operam previdência complementar é a definição de uma gestão dos ativos e passivos (do inglês ALM – Asset and Liability Management). Tal questão se torna mais relevante em um cenário de alta competitividade, margens operacionais decrescentes, garantias mínimas de rentabilidade para um passivo estocástico de longo prazo e um período de queda da rentabilidade dos instrumentos financeiros, sendo estes muitas vezes de difícil precificação e pouco previsíveis num mercado volátil como o brasileiro. Somada a estas dificuldades, as companhias deste mercado estão sujeitas a uma regulação baseada em riscos, oriunda de práticas internacionais, adotada pelo órgão superior, Susep, que impõe restrições regulamentares para a manutenção da solvência das companhias, o que eleva a dificuldade da definição de um modelo. Diante deste cenário, esta dissertação apresenta uma proposta de ALM baseada em um modelo de programação estocástica multiestágio que tem como objetivo definir dinamicamente a alocação ótima dos ativos, incluindo títulos com pagamentos de cupons, e mensurar o risco de insolvência da companhia para o horizonte de planejamento. / [en] An important issue of open pension funds and insurance companies that operate supplementary pension is the definition of an asset and liability management (ALM) framework. Such a question becomes more relevant in a scenario of high competition, declining operating margins, minimum guaranteed returns to a stochastic long-term liability and a period of falling returns on financial instruments, these being often difficult to pricing and predictable in a volatile market such as Brazil. Added to these issues, those companies are subject to a risk-based regulation, derived from international practices adopted by the national insurance regulator, Susep, which imposes constraints to maintain solvency of companies and therefore increases the complexity of an ALM framework. Due this condition, this dissertation presents a proposition of ALM based on a multistage stochastic programming model, which aims to define a dynamic optimal asset allocation, including bonds with coupons payment, and measure the company s insolvency risk for the planning horizon.
6

[pt] DIMENSIONAMENTO DE UMA ESTOCAGEM DE GÁS NATURAL SOB INCERTEZA DE DEMANDA E PREÇO DE GNL / [en] SIZING OF A NATURAL GAS STORAGE UNDER DEMAND AND PRICE UNCERTAINTY

LILIAN ALVES MARTINS 26 February 2019 (has links)
[pt] No Brasil, a demanda de gás natural possui um comportamento estocástico devido ao consumo das usinas termelétricas, as quais operam em regime de complementariedade ao sistema hidrelétrico. O suprimento de gás natural para estas usinas depende em grande parte do fornecimento de Gás Natural Liquefeito (GNL) spot, importado através de navios metaneiros. Em função do tempo de trânsito dos navios, as compras de GNL devem ocorrer com antecedência em relação ao despacho hidrotérmico. Este descasamento de tempo incentiva a utilização de mecanismos de compatibilização da dinâmica do setor elétrico com a dinâmica da cadeia do gás natural. Uma possibilidade de aumentar a sinergia entre estes domínios é utilizar uma estocagem de gás natural para inserir flexibilidade no sistema. A viabilidade da estocagem dependerá do preço do gás e da demanda ao longo do horizonte de análise. O objetivo deste trabalho é a construção de um modelo de programação linear para dimensionar a capacidade de uma estocagem de gás natural sob incerteza de demanda e de preço de GNL. O modelo apresentado é um híbrido de otimização estocástica, construído para considerar a incerteza do consumo de gás, com otimização robusta, construído para levar em conta a incerteza relacionada aos preços do GNL. O modelo caracteriza o perfil de risco do supridor de gás natural pela utilização do Conditional Value-at-Risk (CVaR) e utiliza um critério de segurança que reproduz um processo de suprimento avesso a risco de déficit. Ao final do trabalho é apresentado um estudo de caso hipotético, utilizando dados públicos do setor elétrico e de gás natural, para avaliar a implantação da estocagem para 2.000 cenários de demanda e patamares distintos de robustez à variação do preço do GNL. / [en] In Brazil, natural gas demand has stochastic behavior since gas-fired power plants operate in conjunction with the hydroelectric system. Natural gas supply to these plants relies upon Liquefied Natural Gas (LNG), imported through cryogenic ships. LNG acquisitions must occur before the natural gas demand is known because of the time of displacement of the ships. This lack of synchronism stimulates the use of harmonizing mechanisms between the electric sector and the natural gas sector. In this context, natural gas storage could be used to introduce flexibility into the system and increase synergy between natural gas supply and demand dynamics. However, the economic performance of the storage will depend on actual gas prices and demand behavior during the period of analysis. This study aims to construct a linear programming model to determine the size of a natural gas storage under demand and LNG price uncertainty. The model is a hybrid of a stochastic optimization algorithm – developed to consider gas demand uncertainty – and a robust optimization algorithm – built to take into account LNG price uncertainty. A convex combination between Conditional Value-at-Risk (CVaR) and expected value is also used to indicate the supplier risk profile as well as a security criterion, introduced to represent a deficit-averse supply process. At the end, a hypothetic case is presented to evaluate the implementation of a natural gas storage. The case presented uses public data from the Brazilian electric and gas natural sectors and considers 2.000 demand scenarios and various levels of robustness to LNG price variation.
7

[en] COMMERCIAL OPTIMIZATION OF A WIND FARM IN BRAZIL USING MONTE CARLO SIMULATION WITH EXOGENOUS CLIMATIC VARIABLES AND A NEW PREFERENCE FUNCTION / [pt] OTIMIZAÇÃO COMERCIAL DE UM PARQUE EÓLICO NO BRASIL UTILIZANDO SIMULAÇÃO DE MONTE CARLO COM VARIÁVEIS CLIMÁTICAS EXÓGENAS E UMA NOVA FUNÇÃO DE PREFERÊNCIA

CRISTINA PIMENTA DE MELLO SPINETI LUZ 03 November 2016 (has links)
[pt] Nos últimos anos, observa-se crescente penetração da energia eólica na matriz energética mundial e brasileira. Em 2015, ela já representava (seis por cento) da capacidade total de geração de energia do país, colocando-o na (décima) posição entre os países com capacidade eólica instalada. A crescente penetração dessa fonte de energia e suas características de intermitência e forte sazonalidade, passaram a demandar modelos de otimização capazes de auxiliar tanto a gestão dos sistemas elétricos com geração intermitente de energia eólica, quanto a comercialização dessa energia. Avançaram, assim, os estudos de previsões de médias a cada (dez) minutos, horárias e diárias de geração eólica, para atender a sua inserção na programação dos sistemas elétricos e a sua comercialização em mercados diários e horários. Contudo, poucos estudos deram atenção à previsão e simulação de médias mensais de geração eólica, imprescindíveis para gestão e otimização da comercialização dessa energia no Brasil, visto que esta ocorre essencialmente em base mensal. Neste contexto, insere-se esta tese, que busca avaliar a otimização comercial de um parque eólico no mercado livre de energia brasileiro, considerando diferentes modelos de simulação da incerteza de geração eólica e níveis de aversão ao risco do gestor. Para representar diferentes níveis de aversão ao risco do gestor, desenvolveu-se uma nova função de preferência, capaz de modelar a variação do nível de aversão ao risco de um mesmo gestor, para diferentes faixas de preferência, definidas a partir de percentis αs de VaRα. A função de preferência desenvolvida é uma ponderação entre o valor esperado e níveis de CVaR dos resultados. De certo modo, ela altera as probabilidades dos resultados, de acordo as preferências do gestor, similar ao efeito dos pesos de decisão na Teoria do Prospecto. Para simulação da geração eólica são adotados modelos autorregressivos com sazonalidade representada por dummies mensais (ARX-11) e periódicos (PAR). Considera-se, ainda, a inclusão de variáveis climáticas exógenas no modelo ARX-11, com ganho de capacidade preditiva. Observou-se que, para um gestor neutro ao risco, as diferentes simulações de geração eólica não alteraram a decisão ótima. O mesmo não é válido para um gestor avesso ao risco, especialmente ao ser considerado o modelo de simulação com variáveis climáticas exógenas. Portanto, é importante a definição de um único modelo de simulação a ser considerado pelo gestor avesso ao risco ou, a adoção de alguma técnica multicritério para ponderação de diferentes modelos. O perfil de risco também altera as decisões ótimas do gestor, observando-se redução do desvio-padrão e da média da distribuição dos resultados e, aumento dos CVaRs e prêmio de risco, à medida que aumenta a aversão ao risco. Assim, é importante a especificação de uma única função de preferência, que represente adequadamente o perfil de risco do gestor ou da empresa, para otimização da comercialização. A flexibilidade da função de preferência desenvolvida, ao permitir a definição de diferentes níveis de aversão ao risco do gestor, para diferentes faixas de preferência, contribui para essa especificação. / [en] In recent years, we have seen an increased penetration of wind power in the Brazilian energy matrix and also worldwide. In 2015, wind power already accounted for (six percent) of the Brazilian total power capacity and the country was the (tenth) in the world raking of wind power installed capacity. Due to the growing penetration of the source, its intermittency and strong seasonality, optimization models able to deal with the management of wind power, both in electrical systems operation and in trading environment, are necessary. Thus, we see the growth in the number of studies concerned about wind power forecasts for every (10) minutes, hours and days, meeting the electrical systems and international trading schedules. However, few studies have given attention to the forecasting and simulation of wind power monthly averages, which are essential for the management and optimization of energy trading in Brazil, since its occurs essentially on a monthly basis. In this context, we introduce this thesis, which seeks to assess the commercial optimization of a wind farm in the Brazilian energy free market, considering different simulation models for the wind power production uncertainty and different levels of manager s risk aversion. In order to represent the manager s different levels of risk aversion, we developed a new preference function, which is able to model the variation of risk aversion level of the same manager, for different preference groups. These groups are defined by α s percentiles of VaRα. The developed preference function is a weighted average between expected value of results and CVaR levels. In a way, it changes the odds of the results, according to the manager s preference, similar to the effect of the decision weights on Prospect Theory. We adopted autoregressive models to simulate wind power generation, with seasonality represented by monthly dummies (ARX -11) or periodic model (PAR). Furthermore, we consider the inclusion of climate exogenous variables in the ARX-11 model and obtain predictive gain. We observed that for a risk neutral manager, different simulations of wind power production do not change the optimal decision. However, this does not apply for risk averse managers, especially when we consider the simulation model with climate exogenous variables. Therefore, it is important that the risk averse manager establishes a single simulation model to consider or adopts some multi-criteria technique for weighting different models. The risk profile also changes the manager optimal decision. We observed that increasing risk aversion, the standard deviation and mean of the results distribution decrease, while risk premium and CVaRs increase. Therefore, to proceed the optimization, it is important to specify a single preference function, which represents adequately the manager or company risk profile. The flexibility of the developed preference function, allowing the definition of different manager s risk aversion levels for different preference groups, contributes to this specification.

Page generated in 0.0556 seconds