1 |
[en] CONTRACTING STRATEGIES IN ENERGY AUCTIONS FOR DISTRIBUTION COMPANIES UNDER DEMAND UNCERTAINTY / [pt] ESTRATÉGIA DE CONTRATAÇÃO DAS DISTRIBUIDORAS EM LEILÕES DE ENERGIA SOB INCERTEZA NA DEMANDAANDRE RESENDE GUIMARAES 16 October 2006 (has links)
[pt] O objetivo desta dissertação de mestrado é analisar o novo
marco regulatório do
setor elétrico brasileiro e seus impactos para as empresas
distribuidoras de energia.
Para isto, foi desenvolvida uma ferramenta computacional
para elaborar estratégias de
atuação das distribuidoras nos leilões de compra de
energia instituídos pela nova
regulamentação. Desta forma, é possível simular o processo
de contratação das
distribuidoras no âmbito do ACR e, com os resultados,
realizar análises do impacto
das novas regras na alocação dos riscos as distribuidoras.
O problema consiste, em um
ambiente de incerteza da demanda e dado um conjunto de
instrumentos de risco,
determinar a estratégia de contratação das distribuidoras,
fornecendo o montante de
energia a ser comprado em cada leilão anteriormente
descrito e resultado da melhor
compra dados os contratos candidatos. A metodologia de
solução é otimização
estocástica multi-estágio, levando em consideração,
principalmente, os diversos
horizontes de contratação e preços da energia, visando
minimizar uma ponderação
entre tarifa para consumidor e custos para distribuidora. / [en] The objective of this work is to analyze the new
regulatory framework of the
Brazilian electric sector. In this sense, it was developed
a computational tool in order
to elaborate strategies for the distribution companies
(DISCOs) in the energy auctions
instituted by the new regulation. The computational tool
was used to simulate the
contracts acquisition process by the DISCOs and the
results were analyzed to measure
impact of new rules and risks allocation for the
distribution companies. The problem
consists, considering the demand uncertainty and the
available risk management
instruments, in determining the contracting strategy of
the DISCOs, i.e., the amount
of energy to be bought in each auction that results from
the best purchase given the
candidate contracts. The solution methodology is based on
a multi-stage stochastic
optimization algorithm, minimizing the tariff for consumer
and costs for DISCO,
taking into account different prices and horizons of the
energy contracts.
|
2 |
[pt] ESTRATÉGIAS PARA GARANTIR VIABILIDADE E CONSISTÊNCIA TEMPORAL NO PLANEJAMENTO DA PRODUÇÃO DE PROCESSOS DE MANUFATURA DISCRETA / [en] STRATEGIES TO ENSURE PLANNING FEASIBILITY AND TIME CONSISTENCY IN DISCRETE MANUFACTURING PRODUCTION PROCESSESDANIELLE DE MACEDO 28 October 2021 (has links)
[pt] Tradicionalmente, em indústrias de produção de peças discretas, no nível
tático do planejamento da produção, é calculado o plano mestre de produção
(Master Production Scheduling – MPS), que estabelece a quantidade de cada
bem a ser produzida por período. Com o MPS em mãos, a necessidade de
matéria-prima é levantada e o requerimento de material é realizado levandose
em consideração o lead time de chegada das peças, que está relacionado
com o modal de transporte previamente definido pela empresa. Mais próximo
da operação, o sequenciamento dos jobs é feito com o objetivo de atender
ao planejamento do MPS. Normalmente, esses quatro problemas - definição
do modal de transporte, elaboração do plano mestre de produção, definição
do momento de compra de materiais e sequenciamento da produção - são
tratados em momentos diferentes e, muitas vezes, de forma determinística.
Neste trabalho é avaliado o impacto financeiro e operacional de realizar o
planejamento de forma determinística e segregada. Em particular, avaliase:
(i) o impacto da estocasticidade e co-otimização do planejamento da
produção e das decisões de compra e (ii) a viabilidade do sequenciamento.
Para (i) é proposto um modelo de otimização estocástica de dois estágios
que co-otimiza as decisões de volume de produção, momentos de compra
e modal de transporte. Para (ii) restrições de sequenciamento de jobs são
adicionadas através de uma heurística e de um modelo de programação
matemática. Avaliações empíricas são feitas por meio de dois experimentos
numéricos com dados realistas de uma empresa do setor automobilístico. Para
(i) observamos uma redução de custo de 7 por cento na operação para o ano de 2018
(ano do planejamento) e cerca de 3,5 por cento para 5000 cenários simulados (out-ofsample),
comparando o modelo de dois estágios proposto com o procedimento
normalmente adotado na indústria. Para (ii) também observamos uma redução
de 8 por cento no custo de operação de 2018, e de 9,6 por cento para 50 cenários simulados (outof-
sample), em relação ao modelo proposto em (i) e 13 por cento no custo de operação
de 2018 e 15,6 por cento para 50 cenários simulados (out-of-sample), em comparação
com o modelo típico da indústria. / [en] Traditionally, in discrete manufacturing industries, at the tactical level
of production planning, the master production scheduling (MPS) is calculated,
which establishes the quantity of each good to be produced per
period. With the MPS in hand, the need for raw material is raised and
the material requirement is carried out taking into account the lead time
arrival of the parts, which is related to the transport mode previously defined
by the company. Closer to the operation, the jobs scheduling is done
with the purpose of meeting MPS planning. Typically, these four problems
- definition of the transportation mode, preparation of master production
scheduling, definition of the time to purchase materials and job scheduling
- are dealt with at different times and often in a deterministic way. In this
work we evaluate the financial and operational impact of carrying out the
planning in a deterministic and segregated way. In particular, we assess:
(i) the impact of stochasticity and co-optimization of production planning
and purchasing decisions and (ii) the feasibility of job scheduling. For (i) a
two-stage stochastic optimization model is proposed that co-optimizes production
volume decisions, purchase moments and transportation mode. For
(ii) sequencing constraints of jobs are added through a heuristic and a mathematical
programming model. Empirical assessments are made through two
numerical experiments with realistic data from a discrete manufacturing
company. For (i) we observed 7 percent cost reduction in the operation for the
year 2018 (planning year) and approximately 3.5 percent for 5000 simulated scenarios
(out-of-sample), comparing the proposed two-stage model with the
procedure typically adopted in the industry. For (ii) we also observed a reduction
of 8 percent in the 2018 operation cost, and 9.6 percent for 50 simulated scenarios
(out-of-sample), in relation to the model proposed in (i) and 13 percent in the
2018 operation cost and 15.6 percent for 50 simulated scenarios (out-of-sample),
compared to the typical industry model.
|
3 |
[en] OPTIMAL PRICING OF NATURAL GAS FLEXIBLE CONTRACTS / [pt] PRECIFICAÇÃO ÓTIMA DOS CONTRATOS DE GÁS NATURAL NA MODALIDADE INTERRUPTÍVELSYLVIA TELLES RIBEIRO 14 July 2010 (has links)
[pt] O segmento industrial desempenha um importante papel no
desenvolvimento do setor de gás Brasileiro. Em função dos baixos preços e dos
incentivos dados pelo governo para a conversão dos processos industriais (muitos
deles dependentes do óleo combustível) para o gás natural, criou-se uma fonte de
demanda firme deste combustível. Como as termelétricas operam em regime de
complementariedade ao sistema hidrelétrico (sendo coordenadas pelo Operador
Nacional do Sistema (ONS) elétrico e chamadas a gerar apenas em situações
hidrológicas desfavoráveis), o oconsumo de gás termelétrico ocorre de forma
esporádica. Uma forma de se aumentar a eficiência do uso do gás, mesclando duas
classes de consumidores se dá através dos contratos interruptíveis, que
proporcionam ao produtor a capacidade de atender consumidores industriais bicombustível
(gás e óleo por exemplo) com o gás ocioso das termelétricas. Como a
atratividade deste contrato depende do desconto dado com relação ao preço do
contrato firme, que não é interrompido, o objetivo deste trabalho é a construção de
um modelo analítico para a determinação do preço ótimo dos contratos de
fornecimento de gás interruptíveis, por parte de um produtor monopolista. O
consumo de gás das termelétricas será considerado como principal fonte de
incerteza do modelo, que por sua vez será caracterizada através de cenários de
operação ótima do sistema elétrico, simulados conforme a metodologia utilizada
pelo ONS. O perfil de risco do produtor será caracterizado pelo Conditional
Value-at-Risk (CVaR). / [en] Brazilian natural gas industry growth has been led by electricity supply. As
hydro plants generate at lower costs, thermal units only produce when hydro
electricity is insufficient. This makes natural gas consumption highly volatile:
Either all thermal units generate together or don’t. When all units generate
together, the gas trader has to buy LNG - Liquified Natural Gas at the spot market
incurring price risk. This risk can be mitigated in case the gas trader is able to sell
flexible contracts to the industrial sector that can be interrupted in case of thermal
generation. Thus the gas volume sold under flexible contracts is used either by
thermal generation or by the industrial sector, virtually reducing total demand and
avoiding emergency LNG purchases. The determination of the optimal price for
these contracts is the aim of this dissertation. The determination model proposed
will try to maximize a convex combination of CVaR - Conditional Value at Risk
NPV - Net Present Value and trader´s profit NPV.
|
4 |
[pt] OPÇÕES REAIS SOB INCERTEZA KNIGHTIANA NA AVALIAÇÃO ECONÔMICA DE PROJETOS DE PESQUISA E DESENVOLVIMENTO (P&D) / [en] REAL OPTIONS UNDER KNIGHTIAN UNCERTAINTY IN ECONOMIC EVALUATION OF RESEARCH AND DEVELOPMENT PROJECTS (P&D)16 July 2012 (has links)
[pt] A tese busca aprimorar, em termos teóricos e práticos, a modelagem de valoração econômica de investimentos sob alto grau de incerteza, tais como os projetos de Pesquisa e Desenvolvimento (P&D), sobretudo os de natureza incremental. Partindo de um modelo de valoração de projetos baseado na Teoria das Opções Reais, incorpora uma concepção de incerteza mais completa, que alcança aspectos ligados ao ato decisório, conhecida como Incerteza knightiana, onde são separados os conceitos de risco e incerteza. A aplicação integral da concepção de Knight (1921) em modelos quantitativos é possível em função do desenvolvimento matemático de Schmeidler (1982), que resultou em nova fórmula de cálculo de valores esperados, baseada na integral de Choquet (1953). O novo modelo compreende um cálculo de valor esperado que reconhece no agente uma aversão à incerteza nessa conceituação, conhecido como valor esperado de Choquet. / [en] The Thesis aims to improve, on theoretical and pratical terms, the modeling of economic valuation of investments under high uncertainty, such as Research and Development projects (R&D), especially those that are incremental in nature. From a valuation model based on the design of Real Options Theory, it incorporates a more complete view of uncertainty, which reaches the decisionmaking aspects of the act, known as knightian Uncertainty, where the concepts of risk and uncertainty are separated. The full implementation of the concept of Knight (1921) on quantitative models is possible according to the mathematical development of Schmeidler (1982), which resulted in a new formula for calculation of expected values, based on the Choquet integral (1953). The new model includes a calculation of expected value that makes it possible for the agent to recognize an uncertainty aversion in this concept, known as the Choquet expected value.
|
5 |
[en] ASSESSING THE VALUE OF NATURAL GAS UNDERGROUND STORAGE IN THE BRAZILIAN SYSTEM: A STOCHASTIC DUAL DYNAMIC PROGRAMMING APPROACH / [pt] ESTIMANDO O VALOR DO ARMAZENAMENTO SUBTERRÂNEO DE GÁS NATURAL NO SISTEMA BRASILEIRO: UMA ABORDAGEM DE PROGRAMAÇÃO DINÂMICA DUAL ESTOCÁSTICALARISSA DE OLIVEIRA RESENDE 04 May 2020 (has links)
[pt] O cenário atual da indústria de gás natural brasileira é caracterizado por baixa maturidade e dinamismo de mercado. O comportamento estocástico da demanda por gás, somado volatilidade do preço de mercado do
GNL, motiva a utilização de estocagem subterrânea como forma de inserir flexibilidade no suprimento, além de promover proteção contra flutuação no preço. No entanto, a literatura existente carece de uma uma ferramenta analítica mais robusta para apoiar uma análise quantitativa dos benefícios que
a atividade UNGS poderia proporcionar à indústria de gás natural. Nesta tese, propomos um modelo de programação dinâmica estocástica para planejamento de longo/médio prazo, a fim de determinar a política ótima de fornecimento juntamente com a possibilidade de armazenamento de gás. Um modelo markoviano caracteriza a demanda termoelétrica, enquanto o preço de GNL é representado por um processo estocástico temporalmente independente. O modelo proposto é eficientemente resolvido usando o algoritmo de programação dinâmica dual estocástica para o estudo de caso brasileiro, considerando dados dos setores de gás e setor elétrico. Para uma escolha exógena, mas significativa, da localização e tamanho do armazenamento subterrâneo, observamos os benefícios operacionais e econômicos da
flexibilidade que esta atividade poderia proporcionar. Além disso, comparando os custos de OPEX e CAPEX de investimentos em infraestrutura de armazenamento em campos depletados e cavernas de sal com as economias proporcionadas pelo armazenamento na operação de fornecimento, é possível observar o benefício econômico da atividade de estocagem. A estrutura proposta fornece suporte quantitativo importante para discussões sobre precificação de infraestrutura e modelo de negócios para Armazenamento
Subterrâneo de Gás Natural. / [en] The current scenario of the Brazilian natural gas industry is characterized by low maturity and dynamism of the market.The stochastic behavior of Brazilian demand for natural gas, added to its associated market price volatility, motivates the usage of underground storage due to supply flexibility and protection against price fluctuations. However, the existing literature lacks a more robust analytical tool to support a quantitative analysis of the benefits that the UNGS activity could provide to the natural gas industry.
In this thesis, we propose a stochastic dynamic programming model for long/medium term planning to determine the supply optimal policy together with the possibility of storing gas. A markovian model characterizes thermoelectric demand while market price is represented by a stagewise independent
stochastic process. The proposed model is efficiently solved using the Stochastic Dual Dynamic Programming algorithm for the Brazilian case study considering realistic data for the actual gas network and electric power system. For an exogenous but meaningful choice of underground storage location
and size, we observe the operational and economic benefits of the provided storage flexibility. Additionally, comparing the OPEX and CAPEX costs of investments in storage infrastructure in depleted fields and
salt caverns with the savings provided by storage in the supply operation, it is possible to observe the economic benefit of storage. The proposed framework provides an important quantitative support for discussion about Underground Natural Gas Storage infrastructure pricing and business models.
|
6 |
[pt] DIMENSIONAMENTO DE UMA ESTOCAGEM DE GÁS NATURAL SOB INCERTEZA DE DEMANDA E PREÇO DE GNL / [en] SIZING OF A NATURAL GAS STORAGE UNDER DEMAND AND PRICE UNCERTAINTYLILIAN ALVES MARTINS 26 February 2019 (has links)
[pt] No Brasil, a demanda de gás natural possui um comportamento estocástico
devido ao consumo das usinas termelétricas, as quais operam em regime de
complementariedade ao sistema hidrelétrico. O suprimento de gás natural para
estas usinas depende em grande parte do fornecimento de Gás Natural Liquefeito
(GNL) spot, importado através de navios metaneiros. Em função do tempo de
trânsito dos navios, as compras de GNL devem ocorrer com antecedência em
relação ao despacho hidrotérmico. Este descasamento de tempo incentiva a
utilização de mecanismos de compatibilização da dinâmica do setor elétrico com a
dinâmica da cadeia do gás natural. Uma possibilidade de aumentar a sinergia entre
estes domínios é utilizar uma estocagem de gás natural para inserir flexibilidade
no sistema. A viabilidade da estocagem dependerá do preço do gás e da demanda
ao longo do horizonte de análise. O objetivo deste trabalho é a construção de um
modelo de programação linear para dimensionar a capacidade de uma estocagem
de gás natural sob incerteza de demanda e de preço de GNL. O modelo
apresentado é um híbrido de otimização estocástica, construído para considerar a
incerteza do consumo de gás, com otimização robusta, construído para levar em
conta a incerteza relacionada aos preços do GNL. O modelo caracteriza o perfil de
risco do supridor de gás natural pela utilização do Conditional Value-at-Risk
(CVaR) e utiliza um critério de segurança que reproduz um processo de
suprimento avesso a risco de déficit. Ao final do trabalho é apresentado um estudo
de caso hipotético, utilizando dados públicos do setor elétrico e de gás natural,
para avaliar a implantação da estocagem para 2.000 cenários de demanda e
patamares distintos de robustez à variação do preço do GNL. / [en] In Brazil, natural gas demand has stochastic behavior since gas-fired power
plants operate in conjunction with the hydroelectric system. Natural gas supply to
these plants relies upon Liquefied Natural Gas (LNG), imported through
cryogenic ships. LNG acquisitions must occur before the natural gas demand is
known because of the time of displacement of the ships. This lack of synchronism
stimulates the use of harmonizing mechanisms between the electric sector and the
natural gas sector. In this context, natural gas storage could be used to introduce
flexibility into the system and increase synergy between natural gas supply and
demand dynamics. However, the economic performance of the storage will
depend on actual gas prices and demand behavior during the period of analysis.
This study aims to construct a linear programming model to determine the size of
a natural gas storage under demand and LNG price uncertainty. The model is a
hybrid of a stochastic optimization algorithm – developed to consider gas demand
uncertainty – and a robust optimization algorithm – built to take into account
LNG price uncertainty. A convex combination between Conditional Value-at-Risk
(CVaR) and expected value is also used to indicate the supplier risk profile as well
as a security criterion, introduced to represent a deficit-averse supply process. At
the end, a hypothetic case is presented to evaluate the implementation of a natural
gas storage. The case presented uses public data from the Brazilian electric and
gas natural sectors and considers 2.000 demand scenarios and various levels of
robustness to LNG price variation.
|
Page generated in 0.0289 seconds