Spelling suggestions: "subject:"[een] SOIL DYNAMICS"" "subject:"[enn] SOIL DYNAMICS""
11 |
The phase transformation friction angle of sandAlps, Mike. January 2007 (has links)
Thesis (M.S.)--University of Nevada, Reno, 2007. / "May 2007." Includes bibliographical references (leaves 97-99). Online version available on the World Wide Web.
|
12 |
Adequacy of surface diffusion models to simulate nonequilibrium mass transfer in soilsHasan, Nazmul, January 2008 (has links) (PDF)
Thesis (M.S. in environmental engineering)--Washington State University, August 2008. / Includes bibliographical references (p. 16-19).
|
13 |
A computational framework for dynamic soil-structure interaction analysis /Sribalaskandarajah, Kandiah. January 1996 (has links)
Thesis (Ph. D.)--University of Washington, 1996. / Vita. Includes bibliographical references (leaves 114-122).
|
14 |
Lattice formation in liquefaction using numerically evaluated particle dynamics /Spears, Robert E. January 1900 (has links)
Thesis (Ph. D.)--University of Idaho, 2006. / Abstract. "June 2006." "In liquefaction, the movement of particles is generally viewed as random and isotropic. A numerical study has been performed based on the hypothesis that as liquefaction occurs, initially randomly placed particles become organized into a lattice structure. As a result, the initial behavior may be isotropic, but there is a progressive movement to anisotropic behavior as cyclic shearing is applied. The study is performed under ideal conditions considering spherically shaped particles of the same size in pure shear. The results of the study showed that the particles organize to the same lattice structure regardless of friction coefficient or shear plane selection. Consequently, this study provides a tool for calibrating constitutive models related to liquefaction."--p. iii. Includes bibliographical references (leaves 45-51). Also available online in PDF format.
|
15 |
A new hybrid method for three-dimensional dynamic soil-structure interaction.Mathur, Ravindra Prasad. January 1989 (has links)
A hybrid method based on three-dimensional finite element idealization in the near field and a semi-analytic scheme using the principles of wave propagation in multilayered half space in the far field is proposed for dynamic soil-structure interaction analysis. It combines the advantages of both the numerical and analytical techniques. A structure resting on the surface or embedded in a multilayered soil-medium and subjected to vertically propagating plane waves is analyzed by using the method. An important aspect of the soil-structure interaction problem considered is the presence of waves scattered from the soil-structure interface and geometrical irregularities in the soil. The dynamic response of an embedded structure of rectangular cross section to a vertically propagating compressional pulse is solved as an example problem. The proposed method is verified by comparison of its predictions with those from a finite element procedure with absorbing boundaries, and from an analytical solution. The results from the hybrid method compare well with those from the other two, with closer correlation between the hybrid and analytical methods.
|
16 |
Frequency Optimization of Vibratory Rollers and Plates for Compaction of Granular SoilWersäll, Carl January 2016 (has links)
Vibratory rollers are commonly used for compaction of embankments and landfills. This task is time consuming and constitutes a significant part of most large construction and infrastructure projects. By improving the compaction efficiency, the construction industry would reduce costs and environmental impact. This research project studies the influence of the vibration frequency of the drum, which is normally a fixed roller property, and whether resonance can be utilized to improve the compaction efficiency. The influence of frequency on roller compaction has not before been studied but the concept of resonance compaction has previously been applied successfully in deep compaction of fills and natural deposits. In order to examine the influence of vibration frequency on the compaction of granular soil, small-scale compaction tests of sand were conducted under varying conditions with a vertically oscillating plate. Subsequently, full-scale tests were conducted using a vibratory soil compaction roller and a test bed of crushed gravel. The results showed that resonance can be utilized in soil compaction by vibratory rollers and plates and that the optimum compaction frequency from an energy perspective is at, or slightly above, the coupled compactor-soil resonant frequency. Since rollers operate far above resonance, the compaction frequency can be significantly reduced, resulting in a considerable reduction in fuel consumption, environmental impact and machine wear. The thesis also presents an iterative equivalent-linear method to calculate the frequency response of a vibrating foundation, such as a compacting plate or the drum of a roller. The method seems promising for predicting the resonant frequency of the roller-soil system and can be used to determine the optimum compaction frequency without site- and roller-specific measurements. / <p>QC 20160613</p>
|
17 |
Dynamic behavior of silty soilsSunitsakul, Jutha 22 September 2004 (has links)
The cyclic resistance of predominantly fine-grained soils has received considerable
attention following ground and foundation failures at sites underlain by silt-rich
soils during recent earthquakes. In several cases substantial ground deformation
and reduced bearing capacity of silt soils has been attributed to excess pore
pressure generation during cyclic loading. These field case studies are significant
due to the occurrence of liquefaction related phenomena in soils that would be
characterized as not susceptible to liquefaction using current geotechnical screening
criteria. The most widely used of these criteria, the "Chinese Criteria" and its
derivatives, are based solely on soil composition and they are essentially diagnostic
tools that categorize the soil in a binary fashion as either liquefiable or non-liquefiable.
The most significant limitations of these screening tools are that they
fail to account for the characteristics of the cyclic loading. This investigation was
undertaken to elucidate the potential for strain development in silts during cyclic
loading, and to develop a practice-oriented procedure for evaluating the seismic
performance of silts as a function of material properties, in situ stresses, and the
characteristics of the cyclic loading.
This dissertation presents the results of a multi-faceted investigation of the potential
for seismically induced pore pressures and large strain development in silt soils.
The primary focus of the research was on the synthesis of laboratory testing results
on fine grained soils. Laboratory data from cyclic tests performed at Oregon State
University and other universities formed the basis for enhanced screening criteria
for potentially liquefiable silts. This data was supplemented with field data from
sites at which excess pore pressure generation, liquefaction, and/or ground failures
were observed during recent earthquakes. This investigation specifically addressed
the behavior of silts during loading in cyclic triaxial tests due to the relative
abundance of data obtained for this test. The data was used in conjunction with
standard geotechnical index tests to enhance an existing energy based procedure for
estimating excess pore pressure generation in silts. This pore pressure model can
be used with the uncoupled, stress-based methods for estimating the post-cyclic
loading volumetric strain developed in this investigation.
The energy-based excess pore pressure model and empirical volumetric strain
relationship were used to calibrate for applications involving silt soils a nonlinear,
effective stress model for dynamic soil response (SUMDES). The SUMDES model
was employed, along with the equivalent linear total stress model SHAKE, to
estimate excess pore pressures generated at un-instrumented field sites that have
exhibited evidence of liquefaction during recent earthquakes. A comparison of the
SUMDES and SHAKE results highlighted the limitations of the latter model for
simulating dynamic soil response at various levels of shaking and pore pressure
response. The results of the SUMDES modeling at several well documented case
study sites are presented in this dissertation. These comparisons are valuable for
demonstrating the uncertainties associated with modeling of the effective stress
behavior of silt during seismic loading. / Graduation date: 2005
|
18 |
Study of surface wave methods for deep shear wave velocity profiling applied in the upper Mississippi embaymentLi, Jianhua, Rosenblad, Brent L. January 2008 (has links)
Title from PDF of title page (University of Missouri--Columbia, viewed on Feb 25, 2010). The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Dissertation advisor: Dr. Brent L. Rosenblad. Vita. Includes bibliographical references.
|
19 |
Development of a multi-measurement confined free-free resonant column device and initial studiesPucci, Martin Joseph 20 December 2010 (has links)
This study is comprised of three major parts. The first part involved the development of a multi-measurement, confined, free-free resonant column device. This device was developed to improve upon traditional manually excited, vacuum-confined, free-free methods. The device is capable of testing specimens with diameters up to 6-in., under confinements upwards of 50 psi. The device is composed of a seismic-source system, a data acquisition system and a specimen support and confinement system. The seismic source system is used to induce small-strain constrained compression waves, and longitudinal and torsional stress waves in the specimen. The data acquisition system is used to measure: (1) direct travel time of constrained compression waves, (2) longitudinal resonance in unconstrained compression, and (3) torsional resonance. From these measurements, constrained compression wave velocity, Vp, unconstrained compression wave velocity, Vc, and shear wave velocity, Vs, can be determined. With these wave velocities, small-strain, constrained modulus, Mmax, Young’s modulus, Emax, and shear modulus, Gmax can be determined. Poisson’s ratio is also calculated with the wave velocities. Finally, from the resonance measurements, small-strain material damping in unconstrained compression, DCmin, and in shear, DSmin, can be evaluated.
The second part of this study involved verification tests with materials of known dynamic properties. The tests were performed with a manufactured aluminum specimen, ASTM graded Ottawa sand, and crushed rock aggregate base. The results compared well with previous results from similar tests.
The third part of this study involved testing artificially cemented ASTM graded Ottawa sand. Cement contents (by weight) of 0.0, 0.5, 1.0 and 2.0%, were used to observe the effect of cementation with curing time at a constant confining pressure of 5 psi. The overall effect of cementation was: (1) a large increase in stiffness, and (2) an increase in material damping. The key effects related to cementation versus curing time are: (1) the increase in wave velocities are reasonably proportional to an increase in cement content up to a curing time of about 5 to 7 days, and (2) after a curing time of 5 to 7 days time the velocity increase with time seems to be similar for all cemented specimens. Additionally, the 2% cemented specimen was tested to observe the effect of confining pressure. The stiffness of this specimen was quite insensitive to confining pressure as was the material damping. / text
|
20 |
A study of bedding intrustion into low strength subgradeOrman, Marc Elliot, 1958- January 1989 (has links)
No description available.
|
Page generated in 0.0376 seconds