• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A NeRF for All Seasons

Michael Donald Gableman (16632723) 08 August 2023 (has links)
<p> </p> <p>As a result of Shadow NeRF and Sat-NeRF, it is possible to take the solar angle into account in a NeRF-based framework for rendering a scene from a novel viewpoint using satellite images for training. Our work extends those contributions and shows how one can make the renderings season-specific. Our main challenge was creating a Neural Radiance Field (NeRF) that could render seasonal features independently of viewing angle and solar angle</p> <p>while still being able to render shadows. We teach our network to render seasonal features by introducing one more input variable — time of the year. However, the small training datasets typical of satellite imagery can introduce ambiguities in cases where shadows are present in the same location for every image of a particular season. We add additional terms to the loss function to discourage the network from using seasonal features for accounting for shadows. We show the performance of our network on eight Areas of Interest containing images captured by the Maxar WorldView-3 satellite. This evaluation includes tests measuring the ability of our framework to accurately render novel views, generate height maps, predict shadows, and specify seasonal features independently from shadows. Our ablation</p> <p>studies justify the choices made for network design parameters. Also included in this work is a novel approach to space carving which merges multiple features and consistency metrics</p> <p>at different spatial scales to create higher quality digital surface map than is possible using standard RGB features.</p>
2

[en] RECONSTRUCTION OF SCENES FROM IMAGES BY COARSE-TO-FINE SPACE CARVING / [pt] RECONSTRUÇÃO DE CENAS A PARTIR DE IMAGENS ATRAVÉS DE ESCULTURA DO ESPAÇO POR REFINAMENTO ADAPTATIVO

ANSELMO ANTUNES MONTENEGRO 03 March 2004 (has links)
[pt] A reconstrução de cenas a partir de imagens tem recebido, recentemente, grande interesse por parte dos pesquisadores das áreas de visão computacional, computação gráfica e modelagem geométrica. Várias são as suas aplicações como, por exemplo, modelagem de objetos a partir de imagens, construção de ambientes virtuais e telepresença. Dentre os métodos que têm produzido bons resultados na reconstrução de cenas a partir de imagens, podemos destacar aqueles que se baseiam em algoritmos de Escultura do Espaço. Tais técnicas procuram determinar quais são os elementos, em uma representação volumétrica do espaço da cena, que satisfazem um conjunto de restrições fotométricas impostas por um conjunto de imagens. Uma vez determinados, tais elementos volumétricos são coloridos de modo que reproduzam as informações fotométricas nas imagens de entrada, com uma certa margem de tolerância especificada com base em critérios estatísticos. Neste trabalho, investigamos o emprego de técnicas utilizadas em visualização no desenvolvimento de métodos de escultura do espaço. Como resultado, propomos um método por refinamento adaptativo que trabalha sobre espaços de reconstrução representados através de subdivisões espaciais. Tal método é capaz de realizar o processo de reconstrução de modo mais eficiente, empregando esforços proporcionais às características locais da cena, que são descobertas à medida em que a reconstrução é realizada. Finalmente, avaliamos a qualidade e a eficiência do método proposto, com base em um conjunto de resultados obtidos através de um sistema de reconstrução de objetos que utiliza imagens capturadas por webcams. / [en] The reconstruction of scenes from imagens has received special attention from researchers of the areas of computer vision, computer graphics and geometric modeling. As examples of application we can mention image-based scene reconstruction, modeling of complex as-built objects, construction of virtual environments and telepresence. Among the most successful methods used for the reconstruction of scenes from images are those based on Space Carving algorithms. These techniques reconstruct the shape of the objects of interest in a scene by determining, in a volumetric representation of the scene space, those elements that satisfy a set of photometric constraints imposed by the input images. Once determined, each photo- consistent element is colorized according to the photometric information in the input images, in such a way that they reproduce the photometric information in the input images, within some pre-specificied error tolerance. In this work, we investigate the use of rendering techniques in space carving methods. As a result, we propose a method based on an adaptive refinement process which works on reconstruction spaces represented by spatial subdivisions. We claim that such method can reconstruct the objects of interest in a more efficient way, using resources proportional to the local characteristics of the scene, which are discovered as the reconstruction takes place. Finally, we evaluate the quality and the efficiency of the method based on the results obtained from a reconstruction device that works with images captured from webcams.
3

Automatic Volume Estimation Using Structure-from-Motion Fused with a Cellphone's Inertial Sensors

Fallqvist, Marcus January 2017 (has links)
The thesis work evaluates a method to estimate the volume of stone and gravelpiles using only a cellphone to collect video and sensor data from the gyroscopesand accelerometers. The project is commissioned by Escenda Engineering withthe motivation to replace more complex and resource demanding systems with acheaper and easy to use handheld device. The implementation features popularcomputer vision methods such as KLT-tracking, Structure-from-Motion, SpaceCarving together with some Sensor Fusion. The results imply that it is possible toestimate volumes up to a certain accuracy which is limited by the sensor qualityand with a bias. / I rapporten framgår hur volymen av storskaliga objekt, nämligen grus-och stenhögar,kan bestämmas i utomhusmiljö med hjälp av en mobiltelefons kamerasamt interna sensorer som gyroskop och accelerometer. Projektet är beställt avEscenda Engineering med motivering att ersätta mer komplexa och resurskrävandesystem med ett enkelt handhållet instrument. Implementationen använderbland annat de vanligt förekommande datorseendemetoderna Kanade-Lucas-Tommasi-punktspårning, Struktur-från-rörelse och 3D-karvning tillsammans medenklare sensorfusion. I rapporten framgår att volymestimering är möjligt mennoggrannheten begränsas av sensorkvalitet och en bias.
4

Analysis of 3D human gait reconstructed with a depth camera and mirrors

Nguyen, Trong Nguyen 08 1900 (has links)
L'évaluation de la démarche humaine est l'une des composantes essentielles dans les soins de santé. Les systèmes à base de marqueurs avec plusieurs caméras sont largement utilisés pour faire cette analyse. Cependant, ces systèmes nécessitent généralement des équipements spécifiques à prix élevé et/ou des moyens de calcul intensif. Afin de réduire le coût de ces dispositifs, nous nous concentrons sur un système d'analyse de la marche qui utilise une seule caméra de profondeur. Le principe de notre travail est similaire aux systèmes multi-caméras, mais l'ensemble de caméras est remplacé par un seul capteur de profondeur et des miroirs. Chaque miroir dans notre configuration joue le rôle d'une caméra qui capture la scène sous un point de vue différent. Puisque nous n'utilisons qu'une seule caméra, il est ainsi possible d'éviter l'étape de synchronisation et également de réduire le coût de l'appareillage. Notre thèse peut être divisée en deux sections: reconstruction 3D et analyse de la marche. Le résultat de la première section est utilisé comme entrée de la seconde. Notre système pour la reconstruction 3D est constitué d'une caméra de profondeur et deux miroirs. Deux types de capteurs de profondeur, qui se distinguent sur la base du mécanisme d'estimation de profondeur, ont été utilisés dans nos travaux. Avec la technique de lumière structurée (SL) intégrée dans le capteur Kinect 1, nous effectuons la reconstruction 3D à partir des principes de l'optique géométrique. Pour augmenter le niveau des détails du modèle reconstruit en 3D, la Kinect 2 qui estime la profondeur par temps de vol (ToF), est ensuite utilisée pour l'acquisition d'images. Cependant, en raison de réflections multiples sur les miroirs, il se produit une distorsion de la profondeur dans notre système. Nous proposons donc une approche simple pour réduire cette distorsion avant d'appliquer les techniques d'optique géométrique pour reconstruire un nuage de points de l'objet 3D. Pour l'analyse de la démarche, nous proposons diverses alternatives centrées sur la normalité de la marche et la mesure de sa symétrie. Cela devrait être utile lors de traitements cliniques pour évaluer, par exemple, la récupération du patient après une intervention chirurgicale. Ces méthodes se composent d'approches avec ou sans modèle qui ont des inconvénients et avantages différents. Dans cette thèse, nous présentons 3 méthodes qui traitent directement les nuages de points reconstruits dans la section précédente. La première utilise la corrélation croisée des demi-corps gauche et droit pour évaluer la symétrie de la démarche, tandis que les deux autres methodes utilisent des autoencodeurs issus de l'apprentissage profond pour mesurer la normalité de la démarche. / The problem of assessing human gaits has received a great attention in the literature since gait analysis is one of key components in healthcare. Marker-based and multi-camera systems are widely employed to deal with this problem. However, such systems usually require specific equipments with high price and/or high computational cost. In order to reduce the cost of devices, we focus on a system of gait analysis which employs only one depth sensor. The principle of our work is similar to multi-camera systems, but the collection of cameras is replaced by one depth sensor and mirrors. Each mirror in our setup plays the role of a camera which captures the scene at a different viewpoint. Since we use only one camera, the step of synchronization can thus be avoided and the cost of devices is also reduced. Our studies can be separated into two categories: 3D reconstruction and gait analysis. The result of the former category is used as the input of the latter one. Our system for 3D reconstruction is built with a depth camera and two mirrors. Two types of depth sensor, which are distinguished based on the scheme of depth estimation, have been employed in our works. With the structured light (SL) technique integrated into the Kinect 1, we perform the 3D reconstruction based on geometrical optics. In order to increase the level of details of the 3D reconstructed model, the Kinect 2 with time-of-flight (ToF) depth measurement is used for image acquisition instead of the previous generation. However, due to multiple reflections on the mirrors, depth distortion occurs in our setup. We thus propose a simple approach for reducing such distortion before applying geometrical optics to reconstruct a point cloud of the 3D object. For the task of gait analysis, we propose various alternative approaches focusing on the problem of gait normality/symmetry measurement. They are expected to be useful for clinical treatments such as monitoring patient's recovery after surgery. These methods consist of model-free and model-based approaches that have different cons and pros. In this dissertation, we present 3 methods that directly process point clouds reconstructed from the previous work. The first one uses cross-correlation of left and right half-bodies to assess gait symmetry while the other ones employ deep auto-encoders to measure gait normality.

Page generated in 0.0611 seconds