• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • 2
  • 1
  • Tagged with
  • 14
  • 14
  • 14
  • 14
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

On Methods for Discrete Topology Optimization of Continuum Structures

Werme, Mats January 2008 (has links)
This thesis consists of an introduction and seven appended papers. The purpose of the introduction is to give an overview of the field of topology optimization of discretized load carrying continuum structures. It is assumed that the design domain has been discretized by the finite element method and that the design variable vector is a binary vector indicating presence or absence of material in the various finite elements. Common to all papers is the incorporation of von Mises stresses in the problem formulations. In the first paper the design variables are binary but it is assumed that the void structure can actually take some load. This is equivalent to adding a small positive value, epsilon, to all design variables, both those that are void and those that are filled with material. With this small positive lower bound the stiffness matrix becomes positive definite for all designs. If only one element is changed (from material to void or from void to material) the new global stiffness matrix is just a low rank modification of the old one and thus the Sherman-Morrison-Woodbury formula can be used to compute the displacements in the neighbouring designs efficiently. These efficient sensitivity calculations can then be applied in the context of a neighbourhood search method. Since the computed displacements are exact in the 1-neighbourhood (when one design variable is changed) the neighbourhood search method will find a local optimum with respect to the 1-neighbourhood. The second paper presents globally optimal zero-one solutions to some small scale topology optimization problems defined on discretized continuum design domains. The idea is that these solutions can be used as benchmarks when testing new algorithms for finding pure zero-one solutions to topology optimization problems. In the third paper the results from the first paper are extended to include also the case where there is no epsilon>0. In this case the stiffness matrix will no longer be positive definite which means that the Sherman-Morrison-Woodbury formula can no longer be applied. The changing of one or two binary design variables to their opposite binary values will still result in a low rank change, but the size of the reduced stiffness matrix will change with the design. It turns out, however, that it is possible to compute the effect of these low rank changes efficiently also without the positive lower bound. These efficient sensitivity calculations can then be used in the framework of a neighbourhood search method. In this case the complete 1-neighbourhood and a subset of the 2-neighbourhood is investigated in the search for a locally optimal solution. In the fourth paper the sensitivity calculations developed in the third paper are used to generate first and partial second order approximations of the nonlinear functions usually present in topology optimization problems. These approximations are then used to generate subproblems in two different sequential integer programming methods (SLIP and SQIP, respectively). Both these methods generate a sequence of iteration points that can be proven to converge to a local optimum with respect to the 1-neighbourhood. The methods are tested on some different topology optimization problems. The fifth paper demonstrates that the SLIP method developed in the previous paper can be applied also to the mechanism design problem with stress constraints. In order to generate the subproblems in a fast way small displacements are assumed, which implies that the efficient sensitivity calculations derived in the third paper can be used. The numerical results indicate that the method can be used to lower the stresses and still get a functional mechanism. In the sixth paper the SLIP method developed in the fourth paper is used as a post processor to obtain locally optimal zero-one solutions starting from a rounded solution to the corresponding continuous problem. The numerical results indicate that the method can perform well as a post processor. The seventh paper is a theoretical paper that investigates the validity of the commonly used positive lower bound epsilon on the design variables when stating and solving topology optimization problems defined on discretized load carrying continuum structures. The main result presented here is that an optimal "epsilon-1" solution to an "epsilon-perturbed" discrete minimum weight problem with constraints on compliance, von Mises stresses and strain energy densities, is optimal, after rounding to zero-one, to the corresponding "unperturbed" discrete problem. This holds if the constraints in the perturbed problem are carefully defined and epsilon>0 is sufficiently small. / QC 20100917
12

Projeto de transdutores piezocompósitos de casca multi-camada utilizando o método de otimização topológica. / Design of piezocomposite multi-layered shell transducers using the topology optimization method.

Kiyono, César Yukishigue 15 January 2013 (has links)
Transdutores baseados em cascas piezocompósitas têm uma vasta aplicação no campo de estruturas inteligentes, principalmente como atuadores, sensores e coletores de energia. Essas estruturas piezocompósitas são geralmente compostas por dois ou mais tipos de materiais, como por exemplo materiais piezelétricos, ortotrópicos elásticos (possuem fibras de reforçamento) e isotrópicos (materiais homogêneos). Vários fatores devem ser considerados no projeto de transdutores baseados em cascas piezocompósitas, como o tamanho, a forma, a localização e a polarização do material piezelétrico, bem como a orientação das fibras do material ortotrópico. O projeto desses transdutores é complexo e trabalhos anteriores envolvendo esses tipos de materiais sugerem utilizar Método de Otimização Topológica (MOT) para aprimorar o desempenho dos transdutores distribuindo o material piezelétrico sobre substratos fixos de materiais isotrópicos e ortotrópicos, ou otimizar a orientação das fibras dos materiais ortotrópicos com material piezelétrico com tamanho, forma e localização previamente estabelecidos. Assim, nesta tese, propõe-se o desenvolvimento de uma metodologia baseada no MOT para projetar transdutores piezocompósitos de casca considerando, simultaneamente, a otimização da distribuição e do sentido de polarização do material piezelétrico, e também a otimização da orientação das fibras de materiais ortotrópicos, que é livre para assumir valores diferentes ao longo da mesma camada compósita. Utilizando essa metodologia, são obtidos resultados numéricos para atuadores e sensores em regime estático e para coletores de energia com circuito elétrico acoplado, em regime dinâmico amortecido. Para os casos dos sensores e dos coletores de energia, também são consideradas as tensões mecânicas na estrutura, as quais devem obedecer os critérios de von Mises (para materiais isotrópicos) e de Tsai-Wu (para materiais ortotrópicos) para que não haja falhas na estrutura, que está sujeita a esforços mecânicos. / Transducers based on laminated piezocomposite shell structures have a wide application in the field of smart structures, especially as actuators, sensors and energy harvesting devices. These piezocomposite structures are generally composed by two or more kinds of materials, such as piezoelectric, isotropic, and elastic orthotropic (fiber reinforcement) materials. Several factors must be considered in the design of piezocomposite transducers, such as size, shape, location and polarization of the piezoelectric material and the fiber orientation of the orthotropic material. The design of these transducers is complex and previous studies involving these types of materials suggest using \"Topology Optimization Method\" (TOM) to enhance the performance of piezoelectric transducers by distributing piezoelectric material over fixed isotropic and orthotropic substrate or to optimize the fiber orientation of orthotropic materials with piezoelectric patches previously established. Thus, this thesis proposes the development of a methodology based on the TOM to design laminated piezocomposite shell transducers by considering simultaneously the optimization of distribution and the polarization direction of the piezoelectric material, and also the optimization of the fiber orientation orthotropic material, which is free to assume different values along the same composite layer. By using this methodology, numerical results are obtained for actuators and sensors under static response, and energy harvesting devices with an electrical circuit coupled, in dynamic damped analysis. In the case of sensors and energy harvesting devices, which are subjected to mechanical loads, the mechanical stresses in the structure are also considered, which must satisfy two stress criteria to prevent failure: von Mises for isotropic materials and Tsai-Wu for orthotropic materials.
13

Projeto de transdutores piezocompósitos de casca multi-camada utilizando o método de otimização topológica. / Design of piezocomposite multi-layered shell transducers using the topology optimization method.

César Yukishigue Kiyono 15 January 2013 (has links)
Transdutores baseados em cascas piezocompósitas têm uma vasta aplicação no campo de estruturas inteligentes, principalmente como atuadores, sensores e coletores de energia. Essas estruturas piezocompósitas são geralmente compostas por dois ou mais tipos de materiais, como por exemplo materiais piezelétricos, ortotrópicos elásticos (possuem fibras de reforçamento) e isotrópicos (materiais homogêneos). Vários fatores devem ser considerados no projeto de transdutores baseados em cascas piezocompósitas, como o tamanho, a forma, a localização e a polarização do material piezelétrico, bem como a orientação das fibras do material ortotrópico. O projeto desses transdutores é complexo e trabalhos anteriores envolvendo esses tipos de materiais sugerem utilizar Método de Otimização Topológica (MOT) para aprimorar o desempenho dos transdutores distribuindo o material piezelétrico sobre substratos fixos de materiais isotrópicos e ortotrópicos, ou otimizar a orientação das fibras dos materiais ortotrópicos com material piezelétrico com tamanho, forma e localização previamente estabelecidos. Assim, nesta tese, propõe-se o desenvolvimento de uma metodologia baseada no MOT para projetar transdutores piezocompósitos de casca considerando, simultaneamente, a otimização da distribuição e do sentido de polarização do material piezelétrico, e também a otimização da orientação das fibras de materiais ortotrópicos, que é livre para assumir valores diferentes ao longo da mesma camada compósita. Utilizando essa metodologia, são obtidos resultados numéricos para atuadores e sensores em regime estático e para coletores de energia com circuito elétrico acoplado, em regime dinâmico amortecido. Para os casos dos sensores e dos coletores de energia, também são consideradas as tensões mecânicas na estrutura, as quais devem obedecer os critérios de von Mises (para materiais isotrópicos) e de Tsai-Wu (para materiais ortotrópicos) para que não haja falhas na estrutura, que está sujeita a esforços mecânicos. / Transducers based on laminated piezocomposite shell structures have a wide application in the field of smart structures, especially as actuators, sensors and energy harvesting devices. These piezocomposite structures are generally composed by two or more kinds of materials, such as piezoelectric, isotropic, and elastic orthotropic (fiber reinforcement) materials. Several factors must be considered in the design of piezocomposite transducers, such as size, shape, location and polarization of the piezoelectric material and the fiber orientation of the orthotropic material. The design of these transducers is complex and previous studies involving these types of materials suggest using \"Topology Optimization Method\" (TOM) to enhance the performance of piezoelectric transducers by distributing piezoelectric material over fixed isotropic and orthotropic substrate or to optimize the fiber orientation of orthotropic materials with piezoelectric patches previously established. Thus, this thesis proposes the development of a methodology based on the TOM to design laminated piezocomposite shell transducers by considering simultaneously the optimization of distribution and the polarization direction of the piezoelectric material, and also the optimization of the fiber orientation orthotropic material, which is free to assume different values along the same composite layer. By using this methodology, numerical results are obtained for actuators and sensors under static response, and energy harvesting devices with an electrical circuit coupled, in dynamic damped analysis. In the case of sensors and energy harvesting devices, which are subjected to mechanical loads, the mechanical stresses in the structure are also considered, which must satisfy two stress criteria to prevent failure: von Mises for isotropic materials and Tsai-Wu for orthotropic materials.
14

[en] LOCALLY STRESS-CONSTRAINED TOPOLOGY OPTIMIZATION WITH CONTINUOUSLY VARYING LOADING DIRECTION AND AMPLITUDE: TOWARD LARGE-SCALE PROBLEMS / [pt] OTIMIZAÇÃO TOPOLÓGICA COM RESTRIÇÕES LOCAIS DE TENSÃO E VARIAÇÃO CONTÍNUA DA DIREÇÃO E AMPLITUDE DO CARREGAMENTO: APLICAÇÕES EM PROBLEMAS DE GRANDE ESCALA

FERNANDO VASCONCELOS DA SENHORA 21 June 2022 (has links)
[pt] Otimização topológica (OT) é uma técnica de otimização estrutural capaz de gerar projetos incrivelmente detalhados para uma grande gama de problemas. No entanto, a maioria dos trabalhos de OT presentes na literatura está focada em problemas de minimização de flexibilidade, que não consideram a resistência dos materiais durante o processo de otimização, levando a soluções que não satisfazem limites de falha do material. Neste trabalho, focamos em problemas de OT baseados em tensão no qual introduzimos restrições de tensão no problema de otimização, para garantir a integridade estrutural do projeto final. A formulação de tensão de OT nos leva a um problema de engenharia muito mais natural que nos remete à seguinte pergunta: Qual a estrutura mais leve capaz de suportar as cargas as quais será submetida? Para ajudar a responder essa pergunta e para trazer a OT para mais próximo de aplicações reais, neste trabalho foi desenvolvido um sistema computacional em paralelo, baseado em GPU, considerando uma carga que pode variar a sua direção continuamente e capaz de resolver problemas de larga escala. A implementação em GPU apresenta soluções eficientes para os principais problemas de OT de larga escala, como o filtro, o algoritmo de otimização e a solução das equações de equilíbrio. Ao mesmo tempo, ao considerar uma carga variando continuamente que mais se aproxima das condições reais de carregamento usando uma estratégia de pior cenário, obtém-se soluções mais robustas e mais adequadas a aplicações de engenharia. Várias soluções numéricas são apresentadas, incluindo problemas 3D com mais de 45 milhões de restrições de tensão, que demonstram a efetividade das técnicas desenvolvidas neste trabalho. O sistema de larga escala baseado em GPU combinado com as soluções analíticas para a variação contínua de carga, tem o potencial de expandir o uso da OT na engenharia levando a novas e mais eficientes estruturas. / [en] In the field of structural optimization, Topology Optimization (TO) is one of the most general techniques because it is able to generate complex structures with intricate details for a wide range of problems. However, most of the works in TO have focused on compliance-based design that does not consider material strength in the design process leading to structures that do not satisfy material failure requirements. In this work, we focus on the stress-based design approach. We introduce stress constraints in the optimization procedure to guarantee the structural integrity of the final optimized design. This leads to a more natural formulation that addresses a simple engineering question: What is the lightest structure able to withstand its loads? We developed a large-scale GPU-based parallel stress-constrained TO framework considering a continuous range of varying load directions to answer this question and close the gap between TO and practical application. The developed GPU-based C++/CUDA framework efficiently addresses the main challenges of large-scale TO, filtering, optimization algorithm, and the solution of the equilibrium equations, only requiring a moderately affordable GPU hardware. At the same time, we obtain designs that are more suitable for engineering applications by considering a continuous variable range of load directions that more closely resemble real-life service loads using a worstcase analytical approach. We present several numerical results, including 3D problems with over 45 million local constraints providing detailed optimal structures that demonstrate the capabilities of the techniques developed in this work. The large-scale GPU framework, combined with the analytical solutions for continuously varying load cases, has the potential to expand the applications of TO techniques leading to improved engineering designs.

Page generated in 0.037 seconds