Spelling suggestions: "subject:"[een] STRUCTURED LIGHT"" "subject:"[enn] STRUCTURED LIGHT""
21 |
Výzkumný 3D skener pro účely skenování problematických povrchů / Research 3D scanner for scanning of problematic surfacesBátrla, Martin January 2019 (has links)
This diploma thesis deals with design of 3D scanner for scanning problematic surfaces. The research part introduces the problem of 3D scanning and describes causes of random errors. Further, it contains a description and division of methods that leads to their elimination. The practical part of the thesis deals with design and description of hardware and software parts of the 3D scanner. The output of this work is device that is able to implement and compare quality of codification methods mainly for scanning of problematic surfaces. The functionality of equipment was verified by experimental measurement.
|
22 |
Structured Light Vision Systems Using a Robust Laser Stripe Segmentation MethodZhankun Luo (10745715) 05 May 2021 (has links)
In thesis, we propose a structured light vision system equipped with multi-cameras and multi-laser emitters for object height measurement or 3D reconstruction. The proposed method offers a better accuracy performance over a single camera system. The structured light method may fail the interference of reflection and scattering of light. We use U-Net to extract the laser region, obtain the laser stripe center after erosion and dilation, and finally reconstruct the point cloud corresponding to the laser stripe. Our experiments demonstrate that our structured light system with the U-Net can perform effectively and robustly in a complex environment.
|
23 |
Interaction of Structured Femtosecond Light Pulses with MatterRahimiangolkhandani, Mitra 28 June 2021 (has links)
Physics and potential applications of femtosecond laser pulses interacting with matter have captured interest in various fields, such as nonlinear optics, laser micromachining, integrated optics, and solar cell technologies. On the one hand, such ultrashort intense pulses make them practical elegant tools to be utilized for direct structuring of materials with high accuracy and numerous potential applications. On the other hand, studying the fundamental aspects and nonlinear nature of such interactions opens new remarkable venues for various unique investigations. In recent years, the emerging topic of structured light (also known as twisted or optical vortex light), i.e., a beam of light with a twisted wave-front that can carry orbital angular momentum (OAM), has attracted the attention of many researchers working in the field of light-matter interaction. Such beams offer various applications from classical and quantum communication to imaging, micro/nano-manipulation, and modification of fundamental processes involved in light-matter interactions, e.g., absorption and emission. Nevertheless, the fabrication of complex structures, controlled modification, and achieving a high spatial resolution in material processing still remain in the spotlight. Moreover, the fundamental role of orbital angular momentum in the nonlinear absorption of materials, particularly in solids, has yet remained a subject of debate. Addressing these points was the main motive behind this dissertation. To accomplish this objective and investigate new aspects of structured light-matter interaction, I conducted various experiments, the results of which are presented in this work. The general idea was to study the interaction of femtosecond laser radiation, having a structured phase and polarization, with the matter in two aspects: (i) surface morphology modification and (ii) nonlinear absorption of solids. In this regard, I studied surface processing of crystalline silicon and CVD diamond with femtosecond laser vortex pulses generated by a birefringent phase-plate, known as q-plate, in single and multiple pulse irradiation regimes, respectively. The characterization of the modified region was performed using optical microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). I demonstrated that upon irradiation of a single vortex pulse on silicon, a nano-cone structure is formed within the ablated crater, whose height was independent of the helicity of the twisted light. However, for a linearly polarized vortex pulse, the height of the nano-cone decreases at higher pulse energies. The dynamics of nano-cone formation and the role of polarization were also investigated by simulating the mass transport function in this process. Moreover, using superimposed vortex beams, we fabricated complex patterns containing several nano-cones, by single-shot irradiation on the silicon surface. My experimental results offer an ability to actively control and manipulate material, in terms of the nanocones position, in two dimensions with an ultra-high resolution. I further proceeded with our experiments in the multiple pulse regime on a diamond target. By irradiation of a high number of superimposed vortex pulses, I was able to imprint complex polarization states of structured light on the target surface in the form of periodic nano-ripples. This procedure enabled us to not only generate spatially varying nano-gratings but also directly visualize and study very complex states of polarization. Besides these surface structuring, I carried out experimental studies to investigate the response of bulk material to an incident circularly polarized vortex beam that carries orbital angular momentum. The experimental results reveal, for the first time, that such an interaction can produce a differential absorption that gives rise to helical dichroism. We demonstrate that this response is sensitive to the handedness and degree of the twist in the incident vortex beam. Such a dichroism effect may be attributed to the excitation of dipole-forbidden atomic transitions, e.g., electric quadrupole transitions. However, this explanation is not absolute and remains open to further research and investigations.
|
24 |
A Structured Light Based 3D Reconstruction Using Combined Circular Phase Shifting PatternsZhang, Yujia 11 July 2019 (has links)
No description available.
|
25 |
SUPER-RESOLUTION SENSING AND IMAGING USING STRUCTURED LIGHTJustin A Patel (15461831) 19 June 2023 (has links)
<p>Optical imaging methods are limited by the wavelength of light that they use and the amount of scatter that must be imaged through. Super-resolution imaging and sensing methods are those that bypass or mitigate such restrictions. Two super-resolution approaches are presented here using spatially or temporally structured light. Temporal intermittence or blinking of fluorescent emitters is exploited for localization through significant depths of heavy scatter to high resolution, and an efficient algorithm for doing so is presented.</p>
<p>Such temporal structure of emission allows far greater resolution than previous comparable imaging methods, providing opportunities in biophotonics and environmental sensing. Spatial structure can be imposed on coherent light that passes through a heavily scattering medium, in the form of a speckle pattern. Speckle intensity correlations are sensitive to the motion of a moving object obscured by scatter, and we demonstrate that this scatter can act as an analyzer, enhancing this sensitivity as the amount of scatter increases. This increased sensitivity is studied using random matrix theory, and eigenchannel analysis is proposed as an explanation. Simulations demonstrate that a randomly scattering analyzer can give sub-wavelength geometric information about a translated, hidden object. Relative motion of structured illumination is explored, with simulations and mathematical analysis demonstrating far-subwavelength sensitivity using moving fields with multiple different types of structure. This work could enable a new approach for material inspection and characterization, and provide improvements in microscopy. </p>
|
26 |
[en] OPTICAL TWEEZERS AND STRUCTURED LIGHT: TRAPPING MICROPARTICLES IN A DARK FOCUS / [pt] PINÇAS ÓPTICAS E LUZ ESTRUTURADA: APRISIONANDO MICROPARTÍCULAS EM UM FOCO ESCURFELIPE ALMEIDA DA SILVA 13 June 2023 (has links)
[pt] Optomecânica, o estudo de forças induzidas pela luz sobre a matéria,
teve grandes avanços nos últimos anos com diversas implicações sobre todas
as ciências naturais. Pinças ópticas, por exemplo, são amplamente usadas na
física, química e biologia para aprisionar nano e micropartículas com índice de
refração maior do que o meio que a cerca usando, em geral, feixes Gaussianos.
Generalizando essa técnica, trabalhos recentes começaram a explorar estados
de ordem maior dos feixes eletromagnéticos e suas superposições para
aprisionamento óptico, criando feixes com fase, modo e amplitude ajustáveis.
Esses novos graus de liberdade permitem o uso de potenciais arbitrários
e até mesmo forças dependentes do tempo capazes de induzir movimento
controlado no objeto aprisionado. Nesse contexto de feixes estruturados, nós
podemos explorar não apenas as forças atrativas entre luz e matéria, mas
também as forças repulsivas que ocorrem quando o índice de refração da
partícula é menor que o do meio circundante. Neste trabalho vamos explorar
ambos cenários a partir da criação de feixes holográficos com um Modulador
Espacial de Luz (SLM). Mais especificamente, vamos focar na implementação
do feixe de foco escuro, ou feixe de garrafa, onde as partículas encontram
equilíbrio em uma região sem incidência de luz. Resultados experimentais são
apresentados e comparados com simulações numéricas baseadas na teoria de
Lorentz-Mie e possíveis aplicações dessas pinças óticas inversas são discutidas
em optomecânica e biologia. / [en] Optomechanics, the study of light-induced forces upon matter, has seen
tremendous advances in recent years with broad implications to all natural
sciences. Optical tweezers, for instance, are now widely used in physics,
chemistry and biology to trap nano- and micro-objects with a refractive
index greater than of its surrounding medium using typically Gaussian laser
beams. Generalizing these techniques, recent works began to explore higher-order states of the electromagnetic field and its superpositions for optical
trapping, creating beams with customized phase, mode and amplitude. These
new degrees of freedom allows for optical potentials beyond the harmonic
approximation, enabling virtually arbitrary potential forms and even time-dependent forces capable of inducing controlled motion on the trapped object.
Within this context of structured light beams, we can explore not only the
attractive forces between light and matter but the repulsive ones that arise
when the particle s refractive index is smaller than that of its medium. In
this work we explore both scenarios by creating holographic beams with a
Spatial Light Modulator (SLM). Specifically, we focus on the implementation
of the dark focus beam, or optical bottle beam, where particles may find
equilibrium in a region with no incidence of light. Experimental results are
presented and compared to Lorentz-Mie numerical simulations and possible
applications of these inverted optical tweezers in optomechanics and biology
are discussed.
|
27 |
Preserving our Past (PoP): Comparing Methods of Digitally Replicating Historical ArtifactsEaster, Abbie 01 January 2023 (has links) (PDF)
The creation of a digital model of a physical artifact can be a viable method for preserving physical artifacts from deterioration. The purpose of this thesis is to explore how to make digital artifact creation more accessible to non-scanning experts in order to expand the field of historical preservation to all people. The goal of the thesis is to determine which method of digital artifact capture produces the highest fidelity digital artifact while balancing user accessibility, cost, and usability. This study analyzed this through the creation of an online survey that asked participants to compare models created utilizing various digital capture methods.
The results of the survey suggest that photogrammetry is currently the best method of high-fidelity digital artifact creation that balances accessibility, cost, and usability. The results also suggest that photogrammetry is effective at creating digital models of small artifacts with characteristics that typically cause errors in data capture and three-dimensional model creation. These results support the potential for democratizing digital artifact creation to include the contributions of non-experts from all communities and backgrounds, potentially deepening historical knowledge.
|
28 |
The Physics of Spatially Twisted Nematic Liquid CrystalsSit, Alicia 24 October 2023 (has links)
When nematic liquid crystals are placed between parallel glass plates with differing alignment directions, the bulk will twist in order to match the boundary conditions. This phenomenon of a twisted cell has been used extensively for the development of everyday liquid-crystal displays. However, there has been limited study of the twisted cell beyond the 90-degree twist case. In this thesis, I explore the behaviour of inhomogeneous liquid-crystal devices where the front and back alignment layers are uniquely and spatially patterned. This creates a non-symmetric device which can act on light differently depending on the orientation of the device and an externally applied voltage. The effect on the polarization of light is theoretically modelled using Jones matrices, and elastic continuum theory is employed to fully understand how the twist and tilt distributions of the liquid crystals change with field strength. Different pattern configurations were fabricated, tested, and characterized, revealing the complex behaviour that occurs with an applied electric field. Liquid-crystal devices provide a bespoke way of tailoring the spatial distribution of light and photons. A set of quantum key distribution experiments through underwater channels, leveraging these devices to encode information on structured photons, is also presented.
|
29 |
Light transport by topological confinementMa, Zelin 06 September 2023 (has links)
The growth of data capacity in optical communications links, which form the critical backbone of the modern internet, is facing a slowdown due to fundamental nonlinear limitations, leading to an impending "capacity crunch" on the horizon. Current technology has already exhausted degrees of freedom such as wavelength, amplitude, phase and polarization, leaving spatial multiplexing as the last available dimension to be efficiently exploited. To minimize the significant energy requirements associated with digital signal processing, it is critical to explore the upper limit of unmixed spatial channels in an optical fiber, which necessitates ideally packing spatial channels either in real space or in momentum space. The former strategy is realized by uncoupled multi-core fibers whose channel count has already saturated due to reliability constraint limiting fiber sizes. The later strategy is realized by the unmixed multimode fiber whose high spatial efficiency suggest the possibility of high channel-count scalability but the right subset of mode ought to be selected in order to mitigate mode coupling that is ever-present due to the plethora of perturbations a fiber normally experiences. The azimuthal modes in ring-core fibers turn out to be one of the most spatially efficient in this regard, by exploiting light’s orbital angular momentum (OAM). Unmixed mode counts have reached 12 in a ~1km fiber and 24 in a ~10m fiber. However, there is a fundamental bottleneck for scalability of conventionally bound modes and their relatively high crosstalks restricts their utility to device length applications.
In this thesis, we provide a fundamental solution to further fuel the unmixed-channel count in an MMF. We utilize the phenomenon of topological confinement, which is a regime of light guidance beyond conventional cutoff that has, to the best of our knowledge, never been demonstrated till publications based on the subject matter of this thesis. In this regime, light is guided by the centrifugal barrier created by light’s OAM itself rather than conventional total internal reflection arising from the index inhomogeneity of the fiber. The loss of these topologically confined modes (TCMs) decreases down to negligible levels by increasing the OAM of fiber modes, because the centrifugal barrier that keeps photons confined to a fiber core increases with the OAM value of the mode. This leads to low-loss transmission in a km-scale fiber of these cutoff modes. Crucially, the mode-dependent confinement loss of TCMs further lifts the degeneracy of wavevectors in the complex space, leading to frustration of phase-matched coupling. This thus allows further scaling the mode count that was previously hindered by degenerate mode coupling in conventionally bound fiber modes. The frustrated coupling of TCMs thus enables a record amount of unmixed OAM modes in any type of fiber that features a high index contrast, whether specially structured as a ring-core, or simply constructed as a step-index fiber. Using all these favorable attributes, we achieve up to 50 low-loss modes with record low crosstalk (approaching -45 dB/km) over a 130-nm bandwidth in a ~1km-long ring-core fiber. The TCM effect promises to be inherently scalable, suggesting that even higher modes counts can be obtained in the future using this design methodology. Hence, the use of TCMs promises breaking the record spectral efficiency, potentially making it the choice for transmission links in future Space-Division-Multiplexing systems.
Apart from their chief attribute of significantly increasing the information content per photon for quantum or classical networks, we expect that this new light guidance may find other applications such as in nonlinear signal processing and light-matter interactions.
|
30 |
From Macro to Micro: Multi-scalar Digital Approaches at the Sculptor’s Cave, North-East ScotlandBüster, Lindsey S., Armit, Ian, Evans, Adrian A., Sparrow, Thomas, Kershaw, Rachael, Wilson, Andrew S. 02 August 2019 (has links)
No / Excavations in the 1920s and 1970s at the Sculptor’s Cave, North-East Scotland,
revealed that the site was used for mortuary rituals during the Late Bronze
Age (c. 1100–800 BC) and Roman Iron Age (late first to fourth centuries
AD), whilst a series of Pictish symbols carved into its entrance walls suggest
that the cave’s importance continued into the Early Medieval Period. A new
programme of analysis has utilised advanced 3D digital documentation and
3D metrology (specifically, 3D laser scanning) to enable this inaccessible site
to be appreciated by wider audiences and analysed remotely. Detailed in situ
recording of the Pictish symbols was undertaken using macro-level structured
light scanning and the high-fidelity
digital models blended with terrestrial laser
scan data of the cave interior to show the location and detail of the carvings.
This chapter examines the value of emerging digital approaches in the analysis,
presentation and management of the Sculptor’s Cave, from the elucidation of
additional carved details and the monitoring of surface degradation, to the
dissemination of this difficult-to-access site to the wider public via online
platforms. / Historic Environment Scotland provided funding for scanning work. Collaborators Visualising Heritage and Fragmented Heritage at the University of Bradford, funded by HEIF (via the University of Bradford) and the Arts and Humanities Research Council (AH/L00688X/1), respectively.
|
Page generated in 0.0403 seconds