Spelling suggestions: "subject:"[een] SUMMARIZATION"" "subject:"[enn] SUMMARIZATION""
121 |
Unsupervised Video Summarization Using Adversarial Graph-Based Attention NetworkGunuganti, Jeshmitha 05 June 2023 (has links)
No description available.
|
122 |
EXPLORING MULTIPLEX NETWORKSPolychronopoulou, Athanasia 12 1900 (has links)
Complex network theory has been well established as one of the main tools for understanding and analyzing the behavior of the natural systems that surround us. Social networks, genetic and protein interaction networks, airline and road traffic networks, brain connectivity networks and web graphs are only some of the examples. As network theory evolves it becomes more apparent that these complex systems are often composed of multiple types of interactions, each carrying a different piece of information, and therefore are commonly represented in the form of multiplex networks, where each layer represents a different type of interaction among nodes.
In addition to the interactions among the nodes of the networks, these systems also present correlations among the various types of interactions, as represented by the intrinsic structure and the associations of the various layers of the graph. For example, in social sciences, a network with a large overlap between two layers that represent two distinct types of people interactions i.e. friendship and professional ties might indicate that there is an interconnection between the two in the given network. In another example, in transportation networks, where nodes represent airports connected by flights operated by specific airlines (each airline representing a layer of the graph), the structure of the layers can provide information about the airline: traditional airlines such as Lufthansa tend to have a large overlap in activity pattern with other airlines, whereas low-cost airlines such as easyJet tend to avoid such overlaps.
Due to their ability to represent such complex entity interactions, multiplex networks have lately been the focus of a large part of the research community, studying a variety of aspects, such as structural measures, node communities detection, layer reducibility, network generative models, and information spreading. In this work we focus on techniques for the exploration of the intrinsic structure of multiplex networks, and contemplate ways of addressing common challenges of learning from multiplex networks.
In particular, our work focuses on three main directions: structured regression, graph summarization and graph similarity. We analyze and discuss the main challenges of each of these research directions, and then we propose novel methods to address them. For each problem, we utilize artificial data to study their effectiveness, understand their intrinsic properties and evaluate their behavior under a controlled network structure. Then, we report applications on real-world data sets, from variety of domains, and compare our proposed methods with state-of-the-art and well established baseline methods. Through this work, we aim to offer proof that the networks' intrinsic structure, when utilized, can increase the informative power of network theory models and allow researchers to build more educated algorithms. / Computer and Information Science
|
123 |
Automatic Generation and Assessment of Source-code Method SummariesAbid, Nahla Jamal 24 April 2017 (has links)
No description available.
|
124 |
FINDING TEMPORAL ASSOCIATION RULES BETWEEN FREQUENT PATTERNS IN MULTIVARIATE TIME SERIESTATAVARTY, GIRIDHAR 03 April 2006 (has links)
No description available.
|
125 |
HIERARCHICAL SUMMARIZATION OF VIDEO DATALI, WEI 09 October 2007 (has links)
No description available.
|
126 |
Graph Summarization: Algorithms, Trained Heuristics, and Practical Storage ApplicationHodulik, George M. 02 June 2017 (has links)
No description available.
|
127 |
Extracting Opinions from Blog Comments: Analysis, Design and ApplicationsRaghavan, Preethi January 2009 (has links)
No description available.
|
128 |
Semantics-driven Abstractive Document SummarizationAlambo, Amanuel 02 August 2022 (has links)
No description available.
|
129 |
Task-specific summarization of networks: Optimization and LearningEkhtiari Amiri, Sorour 11 June 2019 (has links)
Networks (also known as graphs) are everywhere. People-contact networks, social networks, email communication networks, internet networks (among others) are examples of graphs in our daily life. The increasing size of these networks makes it harder to understand them. Instead, summarizing these graphs can reveal key patterns and also help in sensemaking as well as accelerating existing graph algorithms. Intuitively, different summarizes are desired for different purposes. For example, to stop viral infections, one may want to find an effective policy to immunize people in a people-contact network. In this case, a high-quality network summary should highlight roughly structurally important nodes. Others may want to detect communities in the same people-contact network, and hence, the summary should show cohesive groups of nodes. This implies that for each task, we should design a specific method to reveal related patterns. Despite the importance of task-specific summarization, there has not been much work in this area.
Hence, in this thesis, we design task-specific summarization frameworks for univariate and multivariate networks. We start with optimization-based approaches to summarize graphs for a particular task and finally propose general frameworks which automatically learn how to summarize for a given task and generalize it to similar networks.
1. Optimization-based approaches: Given a large network and a task, we propose summarization algorithms to highlight specific characteristics of the graph (i.e., structure, attributes, labels, dynamics) with respect to the task. We develop effective and efficient algorithms for various tasks such as content-aware influence maximization and time segmentation. In addition, we study many real-world networks and their summary graphs such as people-contact, news-blogs, etc. and visualize them to make sense of their characteristics given the input task.
2. Learning-based approaches: As our next step, we propose a unified framework which learns the process of summarization itself for a given task. First, we design a generalizable algorithm to learn to summarize graphs for a set of graph optimization problems. Next, we go further and add sparse human feedback to the learning process for the given optimization task.
To the best of our knowledge, we are the first to systematically bring the necessity of considering the given task to the forefront and emphasize the importance of learning-based approaches in network summarization. Our models and frameworks lead to meaningful discoveries. We also solve problems from various domains such as epidemiology, marketing, social media, cybersecurity, and interactive visualization. / Doctor of Philosophy / Networks (also known as graphs) are everywhere. People-contact networks, social networks, email communication networks, internet networks (among others) are examples of graphs in our daily life. The increasing size of these networks makes it harder to understand them. Instead, summarizing these graphs can reveal key information and also help in sensemaking as well as accelerating existing graph analysis methods. Intuitively, different summarizes are desired for different purposes. For example, to stop viral infections, one may want to find an effective policy to immunize people in a people-contact network. In this case, a high-quality network summary should highlight roughly important nodes. Others may want to detect friendship communities in the same people-contact network, and hence, the summary should show cohesive groups of nodes. This implies that for each task, we should design a specific method to reveal related patterns. Despite the importance of task-specific summarization, there has not been much work in this area.
Hence, in this thesis, we design task-specific summarization frameworks for various type of networks with different approaches. To the best of our knowledge, we are the first to systematically bring the necessity of considering the given task to the forefront and emphasize the importance of learning-based approaches in network summarization. Our models and frameworks lead to meaningful discoveries. We also solve problems from various domains such as epidemiology, marketing, social media, cybersecurity, and interactive visualization.
|
130 |
Domain-based Frameworks and Embeddings for Dynamics over NetworksAdhikari, Bijaya 01 June 2020 (has links)
Broadly this thesis looks into network and time-series mining problems pertaining to dynamics over networks in various domains. Which locations and staff should we monitor in order to detect C. Difficile outbreaks in hospitals? How do we predict the peak intensity of the influenza incidence in an interpretable fashion? How do we infer the states of all nodes in a critical infrastructure network where failures have occurred? Leveraging domain-based information should make it is possible to answer these questions. However, several new challenges arise, such as (a) presence of more complex dynamics. The dynamics over networks that we consider are complex. For example, C. Difficile spreads via both people-to-people and surface-to-people interactions and correlations between failures in critical infrastructures go beyond the network structure and depend on the geography as well. Traditional approaches either rely on models like Susceptible Infectious (SI) and Independent Cascade (IC) which are too restrictive because they focus only on single pathways or do not incorporate the model at all, resulting in sub-optimality. (b) data sparsity. Additionally, the data sparsity still persists in this space. Specifically, it is difficult to collect the exact state of each node in the network as it is high-dimensional and difficult to directly sample from. (c) mismatch between data and process. In many situations, the underlying dynamical process is unknown or depends on a mixture of several models. In such cases, there is a mismatch between the data collected and the model representing the dynamics. For example, the weighted influenza like illness (wILI) count released by the CDC, which is meant to represent the raw fraction of total population infected by influenza, actually depends on multiple factors like the number of health-care providers reporting the number and public tendency to seek medical advice. In such cases, methods which generalize well to unobserved (or unknown) models are required. Current approaches often fail in tackling these challenges as they either rely on restrictive models, require large volume of data, and/or work only for predefined models.
In this thesis, we propose to leverage domain-based frameworks, which include novel models and analysis techniques, and domain-based low dimensional representation learning to tackle the challenges mentioned above for networks and time-series mining tasks. By developing novel frameworks, we can capture the complex dynamics accurately and analyze them more efficiently. For example, to detect C. Difficile outbreaks in a hospital setting, we use a two-mode disease model to capture multiple pathways of outbreaks and discrete lattice-based optimization framework. Similarly, we propose an information theoretic framework which includes geographically correlated failures in critical infrastructure networks to infer the status of the network components. Moreover, as we use more realistic frameworks to accurately capture and analyze the mechanistic processes themselves, our approaches are effective even with sparse data. At the same time, learning low-dimensional domain-aware embeddings capture domain specific properties (like incidence-based similarity between historical influenza seasons) more efficiently from sparse data, which is useful for subsequent tasks. Similarly, since the domain-aware embeddings capture the model information directly from the data without any modeling assumptions, they generalize better to new models.
Our domain-aware frameworks and embeddings enable many applications in critical domains. For example, our domain-aware frameworks for C. Difficile allows different monitoring rates for people and locations, thus detecting more than 95% of outbreaks. Similarly, our framework for product recommendation in e-commerce for queries with sparse engagement data resulted in a 34% improvement over the current Walmart.com search engine. Similarly, our novel framework leads to a near optimal algorithms, with additive approximation guarantee, for inferring network states given a partial observation of the failures in networks. Additionally, by exploiting domain-aware embeddings, we outperform non-trivial competitors by up to 40% for influenza forecasting. Similarly, domain-aware representations of subgraphs helped us outperform non-trivial baselines by up to 68% in the graph classification task. We believe our techniques will be useful for variety of other applications in many areas like social networks, urban computing, and so on. / Doctor of Philosophy / Which locations and staff should we monitor to detect pathogen outbreaks in hospitals? How do we predict the peak intensity of the influenza incidence? How do we infer the failures in water distribution networks? These are some of the questions on dynamics over networks discussed in this thesis. Here, we leverage the domain knowledge to answer these questions. Specifically, we propose (a) novel optimization frameworks where we exploit domain knowledge for tractable formulations and near-optimal algorithms, and (b) low dimensional representation learning where we design novel neural architectures inspired by domain knowledge. Our frameworks capture the complex dynamics accurately and help analyze them more efficiently. At the same time, our low-dimensional embeddings capture domain specific properties more efficiently from sparse data, which is useful for subsequent tasks. Similarly, our domain-aware embeddings are inferred directly from the data without any modeling assumptions, hence they generalize better. The frameworks and embeddings we develop enable many applications in several domains. For example, our domain-aware framework for outbreak detection in hospitals has more than 95% accuracy. Similarly, our framework for product recommendation in e-commerce for queries with sparse data resulted in a 34% improvement over state-of-the-art e-commerce search engine. Additionally, our approach outperforms non-trivial competitors by up to 40% in influenza forecasting.
|
Page generated in 0.0724 seconds