• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 118
  • 19
  • 17
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 216
  • 216
  • 64
  • 36
  • 29
  • 27
  • 26
  • 24
  • 20
  • 14
  • 13
  • 13
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Ray Anlaysis Of Electromagnetic Scattering From Semi-infinite Array Of Dipoles In Free Space

Polat, Ozgur Murat 01 April 2007 (has links) (PDF)
Electromagnetic wave scattering from a semi-infinite array of dipoles in free space is described by using asymptotic high frequency methods. An electric field integral expression is obtained and solved with asymptotic high frequency methods. An asymptotic field expression is obtained for a finite &times / infinite array of dipoles in free space. The analytical closed form expression for the array guided surface wave launching coefficient is obtained via a combination of an asymptotic high frequency analysis of a related reciprocal problem and Lorentz reciprocity integral formulation for the semi-infinite planar dipole array in which modified Kirchhoff approximation is used. The accuracy and the validity of the asymptotic analytical solutions are compared with the numerical solutions available in the literature before.
122

Near-field radiative energy transfer at nanometer distances

Basu, Soumyadipta 19 October 2009 (has links)
Near-field thermal radiation which can exceed blackbody radiation by several orders of magnitude has potential applications in energy conversion devices, nanofabrication, and near-field imaging. The present dissertation provides a comprehensive and thorough investigation of near-field heat transfer between parallel plates at nanometer distances. The first part of this dissertation focuses on the fundamentals of nanoscale thermal radiation through a systematic study on the near-field heat transfer between doped Si plates. In order to calculate the near-field heat transfer, it is important to accurately predict the dielectric function of doped Si. The dielectric function of doped Si which is described by the Drude model is a function of carrier concentration and mobility. Hence, accurate ionization and carrier mobility models for both p- and n-type Si are identified after a careful review of the available literature. The radiative properties calculated using the improved dielectric function agrees to a good extent with measurements performed using a FTIR. The near-field heat transfer between doped Si plates at varying doping levels is then calculated using the improved dielectric functions. Several important and characteristic features of near-field radiation are revealed in the analysis. An interesting issue regarding the maximum achievable nanoscale thermal radiation arises out of the study on near-field heat transfer in doped Si. The second part of this dissertation investigates the maximum achievable near-field thermal radiation between two plates at finite vacuum gaps. Initially, both the emitter and the receiver are assumed to have identical frequency-independent dielectric functions and a cut off in the order of the lattice spacing is set on the upper limit of the wavevector. The energy transfer is maximum when the real part of dielectric function is around -1 due to surface waves. On the other hand, there is a strong relationship between the imaginary part of the dielectric function and the vacuum gap. While the study using frequency independent dielectric function is not realistic, it lays down the guidelines for the parametric optimization of dielectric functions of real materials for achieving maximum near-field heat transfer. A parametric study of the different adjustable parameters in the Drude and Loretz model is performed in order to analyze their effect on the near-field heat transfer. It is seen that the optimized Drude model always results in greater near-field heat transfer compared to the Lorentz model and the maximum achievable near-field heat transfer is nearly 1 order greater than that between real materials. In the third part of this dissertation, the unusual penetration depth and the energy streamlines in near-field thermal radiation are studied. It is seen that unlike far-field radiation, the penetration depth in near-field heat transfer is dependent on the vacuum gap. This unusual feature results in a 10 nm thick SiC film behaving as completely opaque when the vacuum gap is around 10 nm. The energy streamlines inside the emitter, receiver, and the vacuum gap are calculated using fluctuation electrodynamics and errors generated due to thin film optics are pointed out. It is seen that the lateral shift of the streamlines inside the emitter can be greater than that in the vacuum gap for SiC. However, for doped Si, the lateral shift is comparable in the different media. While the study on the penetration depth determines the thickness of the emitter, the streamlines determine the lateral dimension.
123

Characterization of fatigue damage in A36 steel specimens using nonlinear Rayleigh surface waves

Walker, Simon Valentin 24 August 2011 (has links)
A36 steel is a commonly used material in civil engineering structures where fatigue damage can lead to catastrophic failure. In this research, nonlinear Rayleigh surface waves are used to characterize damage in A36 steel specimens caused by monotonic tension and low cycle fatigue. Fatigue damage produces the increased acoustic nonlinearity that leads to the generation of measurable higher harmonics in an initially monochromatic Rayleigh wave signal. One specimen is subjected to static tension and four specimens are used for low cycle fatigue tests in the tension-tension mode with a constant stress amplitude. The fatigue tests are interrupted at different numbers of cycles for the nonlinear ultrasonic measurements. Tone burst Rayleigh wave signals are generated and detected using a pair of oil coupled wedge transducers. The amplitudes of the first and second harmonic are measured at varying propagation distances to obtain the nonlinearity parameter for a given damage state. The experimental results show an increase of acoustic nonlinearity in the early stages of fatigue life. Furthermore, a close relationship between plastic deformation and the acoustic nonlinearity is found, which indicates that the acoustic nonlinearity is indeed a measure of microplasticity in this material.
124

Study of the horizontal-to-vertical spectral ratio (HVSR) method for characterization of deep soils in the Mississippi Embayment

Goetz, Ryan P., Rosenblad, Brent L. January 2009 (has links)
The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Title from PDF of title page (University of Missouri--Columbia, viewed on December 22, 2009). Thesis advisor: Dr. Brent L. Rosenblad. Includes bibliographical references.
125

Isparta Çünür Bölgesi'nde yüzey dalgası yöntemi ile zemin özelliklerinin araştırılması /

Yiğiter, Nurdan. Kalyoncuoğlu, Ümit Yalçın. January 2008 (has links) (PDF)
Tez (Yüksek Lisans) - Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Jeofizik Mühendisliği Anabilim Dalı, 2008. / Kaynakça var.
126

A quasi Yagi antenna with end fire radiation over a metal ground

Melais, Sergio E 01 June 2009 (has links)
This dissertation presents a detailed investigation on the development of a quasi Yagi antenna with end fire radiation at 2.4 GHz (ISM band) over a metal reflector. Realization of an end fire radiator on top of a metal ground is very difficult because the reflected waves and image currents from the ground degrade the frequency bandwidth and steer the radiation pattern in the broadside direction. This destructive interference is reduced in this research through two quasi Yagi-ground configurations. The first arrangement utilizes a substrate of suitable thickness (7.5mm-0.19 ?g) to displace the ground away from the antenna. The second design implements a high impedance surface (HIS) as ground plane for the antenna. The preferred HIS is the Jerusalem Cross Frequency Selective Surface (JC-FSS) because of its compact size, numerous parameters for tuning and frequency stability in the operating band for a large angular spectrum of TE and TM polarized incident waves. In this work a new parameter is added to the model used for the derivation of the JC-FSS which accounts for the substrate of the antenna lying on top of the FSS, this addition allows for a smaller cell grid. The results for the quasi Yagi antenna over the 7.5mm grounded slab presented an operational bandwidth of 190 MHz with 40°; of beam steering in the end fire direction while the quasi Yagi over the JC-FSS offered 260 MHz of functional bandwidth and 54° of beam steering towards the end fire direction. In addition, the quasi Yagi design over the JC-FSS decreases the combined profile (antenna/backing structure) by 33% in relation to the 7.5mm grounded slab. This dissertation combines for the first time a quasi Yagi antenna with a JC-FSS to achieve end fire radiation in the presence of a ground metal.
127

Condition Assessment of Cemented Materials Using Ultrasonic Surface Waves

Kirlangic, Ahmet Serhan 10 July 2013 (has links)
Mechanical waves provide information about the stiffness and the condition of a medium; thus, changes in medium conditions can be inferred from changes in wave velocity and attenuation. Non-destructive testing (NDT) methods based on ultrasonic waves are often more economical, practical and faster than destructive testing. Multichannel analysis of surface waves (MASW) is a well-established surface wave method used for determination of the shear-wave profile of layered medium. The MASW test configuration is also applicable to assess the condition of concrete elements using appropriate frequency range. Both attenuation and dispersion of ultrasonic waves can be evaluated by this technique. In ultrasonic testing, the characterization of a medium requires the precise measurement of its response to ultrasonic pulses to infer the presence of defects and boundary conditions. However, any ultrasonic transducer attached to a surface affects the measured response; especially at high frequencies. On the other hand, ultrasonic transducers available for engineering application are mostly used to measure wave velocities (travel time method). Therefore, these transducers do not have a flat response in the required frequency range. Moreover, in the case of full-waveform methods, the recorded signals should be normalized with respect to the transfer functions of the transducers to obtain the real response of the tested specimen. The main objective of this research is to establish a comprehensive methodology based on surface wave characteristics (velocity, attenuation and dispersion) for condition assessment of cemented materials with irregular defects. To achieve the major objective, the MASW test configuration is implemented in the ultrasonic frequency range. The measured signals are subjected to various signal processing techniques to extract accurate information. In addition, a calibration procedure is conducted to determine the frequency response functions (FRF) of the piezoelectric accelerometers outside their nominal frequency range. This calibration is performed using a high-frequency laser vibrometer. This research includes three main studies. The first study introduces the calibration approach to measure the FRFs of the accelerometers outside of their flat frequency range. The calibrated accelerometers are then used to perform MASW tests on a cemented-sand medium. The original signals and the corrected ones by eliminating the effect of the FRFs are used to determine material damping of the medium. Although, the damping ratios obtained from different accelerometers are not same, the values from the corrected signals are found closer to the characteristic damping value compared to those from the uncorrected signals. The second study investigates the sensitivity of Rayleigh wave velocity, attenuation coefficient, material damping and dispersion in phase velocity to evaluate the sensitivity of these characteristics to the damage quantity in a medium. The soft cemented-sand medium is preferred as the test specimen so that well-defined shaped defects could be created in the medium. MASW test configuration is implemented on the medium for different cases of defect depth. The recorded signals are processed using different signal processing techniques including Fourier and wavelet transforms and empirical mode decomposition to determine the surface wave characteristics accurately. A new index, ‘dispersion index’, is introduced which quantifies the defect based on the dispersive behaviour. All surface wave characteristics are found capable of reflecting the damage quantity of the test medium at different sensitivity levels. In the final study, the condition assessment of six lab-scale concrete beams with different void percent is performed. The beam specimens involving Styrofoam pellets with different ratios are tested under ultrasonic and mechanical equipment. The assessment produce established in the second study with well-defined defects is pursed for the beams with irregular defects. Among the characteristics, attenuation, P and R-wave velocities and dispersion index are found as the promising characteristics for quantifying the defect volume.
128

Geotechnical Investigations of Wind Turbine Foundations Using Multichannel Analysis of Surface Waves (MASW)

Hicks, Malcolm Andrew January 2011 (has links)
The geophysical technique known as Multichannel Analysis of Surface Waves, or MASW (Park et al., 1999) is a relatively new seismic characterisation method which utilises Rayleigh waves propagation. With MASW, the frequency dependent, planar travelling Rayleigh waves are created by a seismic source and then measured by an array of geophone receivers. The recorded data is used to image characteristics of the subsurface. This thesis explains how MASW was used as a geotechnical investigation tool on windfarms in the lower North Island, New Zealand, to determine the stiffness of the subsurface at each wind turbine site. Shear‐wave velocity (VS) profiles at each site were determined through the processing of the MASW data, which were then used to determine physical properties of the underlying, weathered greywacke. The primary research site, the Te Rere Hau Windfarm in the Tararua Ranges of the North Island, is situated within the Esk Head Belt of Torlesse greywacke (Lee & Begg, 2002). Due to the high level of tectonic activity in the area, along with the high rates of weathering, the greywacke material onsite is highly fractured and weathering grades vary significantly, both vertically and laterally. MASW was performed to characterise the physical properties at each turbine site through the weathering profile. The final dataset included 1‐dimensional MASW shear‐wave evaluations from 100 turbine sites. In addition, Poisson’s ratio and density values were characterised through the weathering profile for the weathered greywacke. During the geotechnical foundation design at the Te Rere Hau Windfarm site, a method of converting shear wave velocity profiles was utilised. MASW surveying was used to determine VS profiles with depth, which were converted to elastic modulus profiles, with the input parameters of Poisson’s ratio and density. This study focuses on refining and improving the current method used for calculating elastic modulus values from shear‐wave velocities, primarily by improving the accuracy of the input parameters used in the calculation. Through the analysis of both geotechnical and geophysical data, the significant influence of overburden pressure, or depth, on the shear wave velocity was identified. Through each of the weathering grades, there was a non‐linear increase in shear wave velocity with depth. This highlights the need for overburden pressure conditions to be considered before assigning characteristic shear wave velocity values to different lithologies. Further to the dataset analysis of geotechnical and geophysical information, a multiple variant non‐linear regression analysis was performed on the three variables of shear wave velocity, depth and weathering grade. This produced a predictive equation for determining shear wave velocity within the Esk Head belt ‘greywacke’ when depth and weathering data are known. If the insitu geological conditions are not comparable to that of the windfarm sites in this study, a set of guidelines have been developed, detailing the most efficient and cost effective method of using MASW surveying to calculate the elastic modulus through the depth profile of an investigation site.
129

The numerical modelling of steep waves interacting with structures

Turnbull, Michael Stuart January 1999 (has links)
The interaction of steep waves with structures is a complex problem which is still not fully understood, and is of great importance for the design of offshore structures. A particular problem of interest is the phenomenon of ringing which is highly nonlinear. In this thesis a number of inviscid free surface flow problems are simulated using a finite element model. The free surface boundary condition is fully nonlinear, meaning nonlinear effects up to very high order can be simulated, depending on mesh resolution. The model uses a fully automatic unstructured mesh generator; this allows the mesh to change its shape and structure as the free surface deforms. Two unstructured mesh generators have been developed, one based on the advancing front method, the other on the Voronoi technique. Variations of each method are examined. Both methods give good quality meshes. The advancing front technique is found to be faster, but the Voronoi method is more robust and reliable. In addition to the standard finite element method, a sigma transformed version of the finite element formulation has been developed as an alternative. Both techniques have been used for the numerical simulations. The sigma transformation involves stretching of the mesh between the bed and free surface, and so has the advantage that remeshing is avoided. The standard finite element method is straightforward to apply to problems involving submerged arbitrary shaped bodies. Simulations have been performed of a number of test cases, such as a standing wave of large amplitude, a base excited tank and steep travelling waves. Convergence tests were carried out and results found to be in close agreement with analytical and alternative numerical solutions of Wu and Eatock Taylor (1994), Wu et al. (1998) and Chern et al. (1999). The force on a submerged horizontal cylinder due a travelling wave has been calculated. First and second order components have been obtained by Fourier analysis. The results have been compared with the theoretical predictions of Ogilvie (1963), Vada (1987) and Wu and Eatock Taylor (1990) and the experimental results of Chaplin (1984).
130

Development of shear wave velocity profiles in the deep sediments of the Mississippi Embayment using surface wave and spectral ratio methods

Bailey, Jonathan Pqul. January 2008 (has links)
Thesis (M.S.)--University of Missouri-Columbia, 2008. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on August 10, 2009 Includes bibliographical references.

Page generated in 0.0326 seconds