• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 79
  • 37
  • 12
  • 7
  • 7
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 173
  • 173
  • 62
  • 43
  • 35
  • 35
  • 33
  • 30
  • 29
  • 29
  • 27
  • 25
  • 24
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Using swarm intelligence for distributed job scheduling on the grid

Moallem, Azin 16 April 2009 (has links)
With the rapid growth of data and computational needs, distributed systems and computational Grids are gaining more and more attention. Grids are playing an important and growing role in today networks. The huge amount of computations a Grid can fulfill in a specificc time cannot be done by the best super computers. However, Grid performance can still be improved by making sure all the resources available in the Grid are utilized by a good load balancing algorithm. The purpose of such algorithms is to make sure all nodes are equally involved in Grid computations. This research proposes two new distributed swarm intelligence inspired load balancing algorithms. One is based on ant colony optimization and is called AntZ, the other one is based on particle swarm optimization and is called ParticleZ. Distributed load balancing does not incorporate a single point of failure in the system. In the AntZ algorithm, an ant is invoked in response to submitting a job to the Grid and this ant surfs the network to find the best resource to deliver the job to. In the ParticleZ algorithm, each node plays a role as a particle and moves toward other particles by sharing its workload among them. We will be simulating our proposed approaches using a Grid simulation toolkit (GridSim) dedicated to Grid simulations. The performance of the algorithms will be evaluated using several performance criteria (e.g. makespan and load balancing level). A comparison of our proposed approaches with a classical approach called State Broadcast Algorithm and two random approaches will also be provided. Experimental results show the proposed algorithms (AntZ and ParticleZ) can perform very well in a Grid environment. In particular, the use of particle swarm optimization, which has not been addressed in the literature, can yield better performance results in many scenarios than the ant colony approach.
22

Natural optimization: An analysis of self-organization principles found in social insects and their application for optimization

Diwold, Konrad 31 July 2012 (has links) (PDF)
Das Forschungsfeld Schwarmintelligenz, also die Anwendung des Verhaltens dezentraler selbstorganisierender Tierkollektive, im Kontext der Informatik hat eine Reihe von state-of-the-art Kontroll- und Optimierungsmechanismen hervorgebracht. Die Untersuchung selbstorganisierender biologischer Systeme fördert zum einen das Design neuer robuster und adaptiver Algorithmen. Zum anderen kann sie das Verständnis der Funktionalität von selbstorganisierenden Prinzipien, welche in der Natur auftreten, unterstützen. Diese Arbeit deckt beide zuvor beschriebenen Aspekte ab. Unter Verwendung von Modellen und Simulation werden offene Fragen bezüglich der Organisation und des Verhaltens von sozialen Insekten beleuchtet. Weiter werden Abstraktionen von selbstorganisierenden Konzepten, welche man bei sozialen Insekten findet, genutzt, um neue Methoden zur Optimierung zu entwickeln. Der erste Teil dieser Arbeit untersucht allgemeine Aspekte der Arbeitsteilung sozialer Insekten. Zuerst wird die Anpassungsfähigkeit von unterschiedlich großen Kolonien, bezüglich dynamischer Veränderungen in der Umwelt untersucht. Die Ergebnisse zeigen, dass die Fähigkeit einer Kolonie, auf Veränderung in der Umwelt zu reagieren, von der Koloniegröße beeinflusst wird. Ein weiterer Aspekt der Arbeitsteilung, welcher in dieser Arbeit untersucht wird, ist, inwieweit eine räumliche Verteilung von Aufgaben und Individuen einen Einfluss auf die Arbeitsteilung hat. Die Ergebnisse deuten an, dass soziale Insekten von einer räumlichen Trennung, der zu bewerkstelligenden Aufgaben profitieren, da eine solche Trennung die Produktivität der Kolonie erhöht. Das könnte erklären, warum eine räumliche getrennte Anordnung von Aufgaben und Individuen häufig in realen Kolonien sozialer Insekten beobachtet werden kann. Der zweite Teil dieser Arbeit untersucht verschiedene Aspekte von Selbstorganisation bei Honigbienen. Zunächst wird der Einfluss der räumlichen Verteilung von Nestplätzen auf die Nestplatzsuche der europäischen Honigbiene Apis mellifera untersucht. Die Ergebnisse legen nahe, dass die Nestplatzsuche eines Schwarms aktiv durch die Anordnung der Nestplätze in der Umwelt beeinflusst wird. Eine nestplatzreiche Umgebung kann den Prozess eines Schwarms, sich für einen Nestplatz zu entscheiden, stark behindern. Das könnte erklären, warum Honigbienenarten, die geringe Anforderungen an Nestplätze haben, was die Anzahl von potenziellen Nestplätzen natürlich erhöht, eine sehr ungenaue Form der Nestplatzsuche aufweisen. Ein zweiter Aspekt der Honigbienen, welcher untersucht wird, sind die Steuerungsmechanismen, die dem kollektiven Flug eines Bienenschwarms unterliegen. Zwei mögliche Führungsmechanismen, aktive und passive Führung, werden hinsichtlich ihrer Fähigkeit verglichen, die Flugeigenschaften eines echten Honigbienenschwarms zu reproduzieren. Die Simulationsergebnisse bestätigen aktuelle empirische Befunde und zeigen, dass aktive Führung in der Lage ist, Charakteristika fliegender Schwärme widerzuspiegeln. Bei passiver Führung ist das nicht der Fall. Eine Anwendung biologischer Konzepte im Bereich der Informatik wird anhand der Nestplatzsuche demonstriert. Diese ist ein natürlicher Optimierungsprozess, basierend auf einfachen Regeln. Erzielt wird eine lokale Optimierung, die es einem Schwarm ermöglicht, Nestplätze in einer bisher unbekannten Umgebung zu finden und aus diesen den besten Nestplatz zu wählen. Das ist die Motivation, Nestplatzsuche im Bereich der Optimierung anzuwenden. Hierfür wird zuerst das Optimierungspotenzial der biologischen Nestplatzsuche mit Hilfe eines biologischen Modells untersucht. Basierend auf der Nestplatzsuche wird ein abstrahiertes algorithmisches Schema, das so genannte „Bee Nest-Site Selection Scheme“ (BNSSS) entworfen. Basierend auf dem Schema wird der erste Nestplatzsuche inspirierte Optimierungsalgorithmus „Bee-Nest\\\'\\\' für die Anwendung im Bereich von molekular Docking entwickelt. Im Vergleich zu anderen Optimierungsalgorithmen erzielt „Bee-Nest“ eine sehr gute Leistung. / The application in computer science of the behaviour found in decentralized self-organizing animal collectives -- also known as swarm intelligence -- has brought forward a number of state-of-the art control and optimization mechanisms. Further study of such self-organizing biological systems can foster the design of new robust and adaptive algorithms, as well as aid in the understanding of self-organizing processes found in nature. This thesis covers both of the aspects described above, namely the use of computational models to investigate open questions regarding the organization and behaviour of social insects, as well as using the abstraction of concepts found in social insects to generate new optimization methods. In the first part of this work, general aspects of division of labour in social insects are investigated. First the adaptiveness of different-sized colonies to dynamic changes in the environment is analysed. The findings show that a colony\\\'s ability to react to changes in the environment scales with its size. Another aspect of division of labour which is investigated is the extent to which different spatial distributions of tasks and individuals influence division of labour. The results suggest that social insects can benefit from a spatial separation of tasks within their environment, as this increases the colony\\\'s productivity. This could explain why a spatial organization of tasks and individuals is often observed in real social insect colonies. The second part of this work investigates several aspects of self-organization found in honeybees. First the influence of spatial nest-site distribution on the ability of the European honeybee Apis mellifera to select a new nest-site is studied. The results suggest that a swarm\\\'s habitat can influence its decision-making process. Nest-site rich habitats can obstruct a swarm\\\'s ability to choose a single site if all sites are of equal quality. This could explain why in nature honeybee species which have less requirements regarding a new nest-site have evolved a more imprecise form of nest-site selection than cavity-nesting species. Another aspect of honeybees which is investigated is the guidance behaviour in migrating swarms. Two potential guidance mechanisms, active and passive guidance, are compared regarding their ability to reproduce real honeybee swarm flight characteristics. The simulation results confirm previous empirical findings, as they show that active guidance is able to reflect a number of characteristics which can be observed in real moving honeybee swarms, while this is not the case for passive guidance. Nest-site selection in honeybees can be regarded as a natural optimization process. It is based on simple rules and achieves local optimization as it enables a swarm to decide between several potential nest-sites in a previously unknown dynamic environment. These factors motivate the application of the nest-site selection process to the problem domain of function optimization. First, the optimization potential of the biological nest-site selection process is studied. Then a general algorithmic scheme called ``Bee Nest-Site Selection Scheme\\\'\\\' (BNSSS) is introduced. Based on the scheme the first nest-site inspired optimization algorithm ``Bee-Nest\\\'\\\' is introduced and successfully applied to the domain of molecular docking.
23

Modeling and forecasting long-term natural gas (NG) consumption in Iran, using particle swarm optimization (PSO)

Kamrani, Ebrahim January 2010 (has links)
The gradual changes in the world development have brought energy issues back into high profile. An ongoing challenge for countries around the world is to balance the development gains against its effects on the environment. The energy management is the key factor of any sustainable development program. All the aspects of development in agriculture, power generation, social welfare and industry in Iran are crucially related to the energy and its revenue. Forecasting end-use natural gas consumption is an important Factor for efficient system operation and a basis for planning decisions. In this thesis, particle swarm optimization (PSO) used to forecast long run natural gas consumption in Iran. Gas consumption data in Iran for the previous 34 years is used to predict the consumption for the coming years. Four linear and nonlinear models proposed and six factors such as Gross Domestic Product (GDP), Population, National Income (NI), Temperature, Consumer Price Index (CPI) and yearly Natural Gas (NG) demand investigated.
24

Improved particle swarm optimisation algorithms.

Sun, Yanxia. January 2011 (has links)
D. Tech. Electrical Engineering. / Particle Swarm Optimisation (PSO) is based on a metaphor of social interaction such as birds flocking or fish schooling to search a space by adjusting the trajectories of individual vectors, called "particles" conceptualized as moving points in a multidimensional space. This thesis presents several algorithms/techniques to improve the PSO's global search ability. Simulation and analytical results confirm the efficiency of the proposed algorithms/techniques when compared to the other state of the art algorithms.
25

A particle swarm optimization approach for tuning of SISO PID control loops

Pillay, Nelendran January 2008 (has links)
Thesis submitted in compliance with the requirements for the Master's Degree in Technology: Electrical Engineering - Light Current, Durban University of Technology, Department of Electronic Engineering, 2008. / Linear control systems can be easily tuned using classical tuning techniques such as the Ziegler-Nichols and Cohen-Coon tuning formulae. Empirical studies have found that these conventional tuning methods result in an unsatisfactory control performance when they are used for processes experiencing the negative destabilizing effects of strong nonlinearities. It is for this reason that control practitioners often prefer to tune most nonlinear systems using trial and error tuning, or intuitive tuning. A need therefore exists for the development of a suitable tuning technique that is applicable for a wide range of control loops that do not respond satisfactorily to conventional tuning. Emerging technologies such as Swarm Intelligence (SI) have been utilized to solve many non-linear engineering problems. Particle Swarm Optimization (PSO), developed by Eberhart and Kennedy (1995), is a sub-field of SI and was inspired by swarming patterns occurring in nature such as flocking birds. It was observed that each individual exchanges previous experience, hence knowledge of the “best position” attained by an individual becomes globally known. In the study, the problem of identifying the PID controller parameters is considered as an optimization problem. An attempt has been made to determine the PID parameters employing the PSO technique. A wide range of typical process models commonly encountered in industry is used to assess the efficacy of the PSO methodology. Comparisons are made between the PSO technique and other conventional methods using simulations and real-time control.
26

Multi-threat containment with dynamic wireless neighborhoods /

Ransom, Nathan A. January 2008 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 2008. / Typescript. Includes bibliographical references (leaves 71-73).
27

Particle swarm optimization and differential evolution for multi-objective multiple machine scheduling

Grobler, Jacomine. January 2009 (has links)
Thesis (M.Eng.(Industrial Engineering))--University of Pretoria, 2008. / Includes bibliographical references.
28

Testability of a swarm robot using a system of systems approach and discrete event simulation /

Hosking, Matthew R. January 2009 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 2009. / Typescript. Includes bibliographical references (leaves 91-97).
29

ACODV ant colony optimisation distance vectoring routing in Ad hoc networks /

Du Plessis, Johan. January 2005 (has links)
Thesis (M. Sc.)(Computer Science)--University of Pretoria, 2006. / Includes summary. Includes bibliographical references. Available on the Internet via the World Wide Web.
30

Inteligência coletiva : manifestações nos ambientes digitais /

Franco, Angela Halen Claro. January 2018 (has links)
Orientadora: Plácida Leopoldina Ventura Amorim da Costa Santos / Banca: Ricardo César Gonçalves Sant'Ana / Banca: Silvana Aparecida Borsetti Gregório Vidotti / Banca: Marcos Luiz Mucheroni / Banca: Rogério Aparecido Sá Ramalho / Resumo: Os estudos em inteligência coletiva têm revelado que as atividades dos indivíduos em grupos apresentam diferentes manifestações, as quais podem ser identificadas como compartilhamento, cooperação e ação coletiva. Defende-se como tese que quanto maior o nível de comprometimento de uma determinada comunidade, maiores as possibilidades da inteligência coletiva resultar em produção de conteúdo; quanto mais possibilidades de produção objetiva de conteúdo, maior a presença direta da Ciência da Informação, e quanto menos produção objetiva de conteúdo mais desafiadora é a atuação dessa ciência, uma vez que sua atenção será sobre os processos de informação. Dessa forma, pretende-se propor um arcabouço epistemológico para a reflexão da inteligência coletiva no âmbito dos estudos em Informação e Tecnologia. Para tanto, a partir de uma pesquisa exploratória, conduzida pelo aspecto bibliográfico, o estudo se propôs a investigar as diferentes manifestações da inteligência coletiva - o compartilhamento, a cooperação e a ação coletiva; definir um modelo para a análise de ambientes digitais que aparentam a cultivação da inteligência coletiva; compreender a trajetória evolutiva dos ambientes digitais que tiveram como foco a inteligência coletiva; analisar, mediante ao modelo criado, os ambientes digitais definidos. Os ambientes selecionados para análise foram o YouTube, Facebook e a Wikipédia. Observou-se que as manifestações analisadas são variáveis que compõem a inteligência coletiva, e que ... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The studies in collective intelligence have revealed that the activities of individuals in groups present different manifestations, which can be identified as sharing, cooperation and collective action. It is defended as thesis that the greater the level of commitment of a determined community, the greater the possibilities of the collective intelligence result in the objective production of content; the more possibilities of objective production of content, the greater the direct presence of Information Science, and the less objective production of content more challenging is the performance of this science, since its attention will be on information processes. In this way, its intend to propose an epistemological framework for the reflection of collective intelligence in the scope of studies in Information and Technology. To do so, based on an exploratory research, steering by the bibliographical aspect, the study proposed to investigate the different manifestations of collective intelligence - sharing, cooperation and collective action; to define a model for the analysis of digital environments that appear to cultivate collective intelligence; to understand the evolutionary trajectory of digital environments that focused on collective intelligence; to analyze, through the created model, the defined digital environments. The environments selected for analysis were YouTube, Facebook, and Wikipedia. Its observed that the analyzed manifestations are variables that make up the ... (Complete abstract click electronic access below) / Doutor

Page generated in 0.0386 seconds