Spelling suggestions: "subject:"[een] SWARM INTELLIGENCE"" "subject:"[enn] SWARM INTELLIGENCE""
51 |
Optimalizační úlohy na bázi částicových hejn (PSO) / PSO-Particle Swarm OptimizationsVeselý, Filip Unknown Date (has links)
This work deals with swarm intelligence, strictly speaking particle swarm intelligence. It shortly describes questions of optimization and some optimization techniques. Part of this work is recherché of variants of particle swarm optimization algorithm. These algorithms are mathematically described. Their advantages or disadvantages in comparison with the basic PSO algorithm are mentioned. The second part of this work describes mQPSO algorithm and created modification mQPSOPC. Described algorithms are compared with each other and with another evolution algorithm on several tests.
|
52 |
Sistema de rastreamento de múltiplos alvos sob restrições de conectividadeCarvalho, Rafael Lima de 30 March 2016 (has links)
A primeira parte deste trabalho lida com o problema de posicionar um grupo de agentes retransmissores (relays) de forma a dar conectividade a um segundo grupo de agentes ativos (pursuers). A primeira abordagem apresentada consiste em modelar o cenário como um problema de programação quadrática (PPQ) com restrições lineares, usando uma estrutura de conectividade fixa. Para resolver o modelo proposto, foi implementada uma rede neural recorrente a qual converge rapidamente para a solução ótima do problema, mesmo em instâncias razoavelmente grandes. Como forma de avaliação, realizou-se um comparativo entre o solver de PPQ da plataforma Matlab e a rede proposta, também implementada na mesma plataforma. Na segunda abordagem foi proposto o uso de uma estimativa da conectividade algébrica do grafo de proximidade gerado pela rede, para direcionar o grupo de relays e pursuers, usando-se apenas as informações da vizinhança de cada agente. Nesta abordagem a estrutura do grafo é dinâmica, além disso, como proposta de paralelização, a esta solução distribuída foi acoplada um algoritmo de escalonamento por reversão de arestas (SER). Além do mais, as metaheurísticas Simulated Annealing, Genetic Algorithms, Particle Swarm Optimization e Backtracking Search Algorithm foram implementadas como alternativas de soluções ao problema. As soluções são avaliadas em um cenário de perseguição de alvos, os quais podem possuir comportamentos reativos (tais como fugir dos perseguidores). A segunda parte deste trabalho investiga o problema de rastreamento de múltiplos objetos em tempo real. Como solução, foi proposto um algoritmo que se baseia em memória de curto e longo prazo usando redes neurais sem peso. / The first part of this work deals with the problem of positioning a swarm of relay agents with the objective of providing connectivity to a second group of active agents (pursuers). The first approach consists of modelling the considered scenario as a quadratic programming problem (QP) with linear restrictions, using a fixed graph structure. In order to solve such model, a recurrent neural network is proposed with fast convergence rate to the optimal solution, even with reasonably big size instances. In addition, a comparison with the Matlab QP solver has been conducted in some experimental simulations. In the second approach, it is proposed an estimation of the algebraic connectivity of the underlying graph generated by the network. Over this estimation, it is proposed a metric to direct the group of relays and pursuers, using only local neighbourhood information of each agent. On this approach, the graph structure is dynamic and it is also proposed the use of the schedule by edge reversal (SER) as a solution to ordering the parallelization of the robot positioning computation. Moreover, the meta-heuristics Simulated Annealing, Genetic Algorithms, Particle Swarm Optimization and Backtracking Search Algorithm have been applied as alternative solution providers. The proposed solutions have been applied in a target pursuit scenario, for which the targets are deployed in different spots and may have some reactive behaviours (such as escape from the pursuers).The second part of this work investigates the visual tracking of shape shift objects in real time. As a solution, it is proposed a short- and long-time memories tracker which uses a weightless neural network for training and retraining the objects patterns.
|
53 |
On the applicability of random mobility models for swarm robot movements /Sail, Siddharth Subhash. January 2007 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 2007. / Typescript. Includes bibliographical references (leaves 61-64).
|
54 |
Investigation of service selection algorithms for grid servicesGuha, Tapashree 15 September 2009
Grid computing has emerged as a global platform to support organizations for coordinated sharing of distributed data, applications, and processes. Additionally, Grid computing has also leveraged web services to define standard interfaces for Grid services adopting the service-oriented view. Consequently, there have been significant efforts to enable applications capable of tackling computationally intensive problems as services on the Grid. In order to ensure that the available services are assigned to the high volume of incoming requests efficiently, it is important to have a robust service selection algorithm. The selection algorithm should not only increase access to the distributed services, promoting operational flexibility and collaboration, but should also allow service providers to scale efficiently to meet a variety of demands while adhering to certain current Quality of Service (QoS) standards. In this research, two service selection algorithms, namely the Particle Swarm Intelligence based Service Selection Algorithm (PSI Selection Algorithm) based on the Multiple Objective Particle Swarm Optimization algorithm using Crowding Distance technique, and the Constraint Satisfaction based Selection (CSS) algorithm, are proposed. The proposed selection algorithms are designed to achieve the following goals: handling large number of incoming requests simultaneously; achieving high match scores in the case of competitive matching of similar types of incoming requests; assigning each services efficiently to all the incoming requests; providing the service requesters the flexibility to provide multiple service selection criteria based on a QoS metric; selecting the appropriate services for the incoming requests within a reasonable time. Next, the two algorithms are verified by a standard assignment problem algorithm called the Munkres algorithm. The feasibility and the accuracy of the proposed algorithms are then tested using various evaluation methods. These evaluations are based on various real world scenarios to check the accuracy of the algorithm, which is primarily based on how closely the requests are being matched to the available services based on the QoS parameters provided by the requesters.
|
55 |
Swarm intelligence techniques for optimization and management tasks insensor networksHernández Pibernat, Hugo 11 June 2012 (has links)
The main contributions of this thesis are located in the domain of wireless sensor netorks. More in detail, we introduce energyaware
algorithms and protocols in the context of the following topics: self-synchronized duty-cycling in networks with energy
harvesting capabilities, distributed graph coloring and minimum energy broadcasting with realistic antennas. In the following, we
review the research conducted in each case.
We propose a self-synchronized duty-cycling mechanism for sensor networks. This mechanism is based on the working and resting
phases of natural ant colonies, which show self-synchronized activity phases. The main goal of duty-cycling methods is to save
energy by efficiently alternating between different states. In the case at hand, we considered two different states: the sleep state,
where communications are not possible and energy consumption is low; and the active state, where communication result in a
higher energy consumption.
In order to test the model, we conducted an extensive experimentation with synchronous simulations on mobile networks and static
networks, and also considering asynchronous networks. Later, we extended this work by assuming a broader point of view and
including a comprehensive study of the parameters. In addition, thanks to a collaboration with the Technical University of
Braunschweig, we were able to test our algorithm in the real sensor network simulator Shawn (http://shawn.sf.net).
The second part of this thesis is devoted to the desynchronization of wireless sensor nodes and its application to the distributed
graph coloring problem. In particular, our research is inspired by the calling behavior of Japanese tree frogs, whose males use their
calls to attract females. Interestingly, as female frogs are only able to correctly localize the male frogs when their calls are not too
close in time, groups of males that are located nearby each other desynchronize their calls.
Based on a model of this behavior from the literature, we propose a novel algorithm with applications to the field of sensor
networks. More in detail, we analyzed the ability of the algorithm to desynchronize neighboring nodes. Furthermore, we considered
extensions of the original model, hereby improving its desynchronization capabilities.To illustrate the potential benefits of
desynchronized networks, we then focused on distributed graph coloring. Later, we analyzed the algorithm more extensively and
show its performance on a larger set of benchmark instances.
The classical minimum energy broadcast (MEB) problem in wireless ad hoc networks, which is well-studied in the scientific
literature, considers an antenna model that allows the adjustment of the transmission power to any desired real value from zero up
to the maximum transmission power level. However, when specifically considering sensor networks, a look at the currently
available hardware shows that this antenna model is not very realistic. In this work we re-formulate the MEB problem for an
antenna model that is realistic for sensor networks. In this antenna model transmission power levels are chosen from a finite set of
possible ones. A further contribution concerns the adaptation of an ant colony optimization algorithm --currently being the state of
the art for the classical MEB problem-- to the more realistic problem version, the so-called minimum energy broadcast problem with
realistic antennas (MEBRA). The obtained results show that the advantage of ant colony optimization over classical heuristics even
grows when the number of possible transmission power levels decreases. Finally we build a distributed version of the algorithm,
which also compares quite favorably against centralized heuristics from the literature. / Las principles contribuciones de esta tesis se encuentran en el domino de las redes de sensores inalámbricas. Más en detalle, introducimos algoritmos y protocolos que intentan minimizar el consumo energético para los siguientes problemas: gestión autosincronizada de encendido y apagado de sensores con capacidad para obtener energía del ambiente, coloreado de grafos distribuido y broadcasting de consumo mínimo en entornos con antenas reales.
En primer lugar, proponemos un sistema capaz de autosincronizar los ciclos de encendido y apagado de los nodos de una red de sensores. El mecanismo está basado en las fases de trabajo y reposo de las colonias de hormigas tal y como estas pueden observarse en la naturaleza, es decir, con fases de actividad autosincronizadas. El principal objectivo de este tipo de técnicas es ahorrar energía gracias a alternar estados de forma eficiente. En este caso en concreto, consideramos dos estados diferentes: el estado dormido, en el que los nodos no pueden comunicarse y el consumo energético es bajo; y el estado activo, en el que las comunicaciones propician un consumo energético elevado.
Con el objetivo de probar el modelo, se ha llevado a cabo una extensa experimentación que incluye tanto simulaciones síncronas en redes móviles y estáticas, como simulaciones en redes asíncronas. Además, este trabajo se extendió asumiendo un punto de vista más amplio e incluyendo un detallado estudio de los parámetros del algoritmo. Finalmente, gracias a la colaboración con la Technical University of Braunschweig, tuvimos la oportunidad de probar el mecanismo en el simulador realista de redes de sensores, Shawn (http://shawn.sf.net).
La segunda parte de esta tesis está dedicada a la desincronización de nodos en redes de sensores y a su aplicación al problema del coloreado de grafos de forma distribuida. En particular, nuestra investigación está inspirada por el canto de las ranas de árbol japonesas, cuyos machos utilizan su canto para atraer a las hembras. Resulta interesante que debido a que las hembras solo son capaces de localizar las ranas macho cuando sus cantos no están demasiado cerca en el tiempo, los grupos de machos que se hallan en una misma región desincronizan sus cantos.
Basado en un modelo de este comportamiento que se encuentra en la literatura, proponemos un nuevo algoritmo con aplicaciones al campo de las redes de sensores. Más en detalle, analizamos la habilidad del algoritmo para desincronizar nodos vecinos. Además, consideramos extensiones del modelo original, mejorando su capacidad de desincronización. Para ilustrar los potenciales beneficios de las redes desincronizadas, nos centramos en el problema del coloreado de grafos distribuido que tiene relación con diferentes tareas habituales en redes de sensores.
El clásico problema del broadcasting de consumo mínimo en redes ad hoc ha sido bien estudiado en la literatura. El problema considera un modelo de antena que permite transmitir a cualquier potencia elegida (hasta un máximo establecido por el dispositivo). Sin embargo, cuando se trabaja de forma específica con redes de sensores, un vistazo al hardware actualmente disponible muestra que este modelo de antena no es demasiado realista. En este trabajo reformulamos el problema para el modelo de antena más habitual en redes de sensores. En este modelo, los niveles de potencia de transmisión se eligen de un conjunto finito de posibilidades. La siguiente contribución consiste en en la adaptación de un algoritmo de optimización por colonias de hormigas a la versión más realista del problema, también conocida como broadcasting de consumo mínimo con antenas realistas.
Los resultados obtenidos muestran que la ventaja de este método sobre heurísticas clásicas incluso crece cuando el número de posibles potencias de transmisión decrece. Además, se ha presentado una versión distribuida del algoritmo, que también se compara de forma bastante favorable contra las heurísticas centralizadas conocidas.
|
56 |
Multiple Cooperative Swarms for Data ClusteringAhmadi, Abbas January 2008 (has links)
Exploring a set of unlabeled data to extract the similar clusters,
known as data clustering, is an appealing problem in machine
learning. In other words, data clustering organizes the underlying
data into different groups using a notion of similarity between
patterns.
A new approach to solve the data clustering problem based on
multiple cooperative swarms is introduced. The proposed approach is
inspired by the social swarming behavior of biological bird flocks
which search for food situated in several places. The proposed
approach is composed of two main phases, namely, initialization and
exploitation. In the initialization phase, the aim is to distribute
the search space among several swarms. That is, a part of the search
space is assigned to each swarm in this phase. In the exploitation
phase, each swarm searches for the center of its associated cluster
while cooperating with other swarms. The search proceeds to converge
to a near-optimal solution. As compared to the single swarm
clustering approach, the proposed multiple cooperative swarms
provide better solutions in terms of fitness function measure for
the cluster centers, as the dimensionality of data and number of
clusters increase.
The multiple cooperative swarms clustering approach assumes that the
number of clusters is known a priori. The notion of stability
analysis is proposed to extract the number of clusters for the
underlying data using multiple cooperative swarms. The mathematical
explanations demonstrating why the proposed approach leads to more
stable and robust results than those of the single swarm clustering
are also provided.
Application of the proposed multiple cooperative swarms clustering
is considered for one of the most challenging problems in speech
recognition: phoneme recognition. The proposed approach is used to
decompose the recognition task into a number of subtasks or modules.
Each module involves a set of similar phonemes known as a phoneme
family. Basically, the goal is to obtain the best solution for
phoneme families using the proposed multiple cooperative swarms
clustering. The experiments using the standard TIMIT corpus indicate
that using the proposed clustering approach boosts the accuracy of
the modular approach for phoneme recognition considerably.
|
57 |
Multiple Cooperative Swarms for Data ClusteringAhmadi, Abbas January 2008 (has links)
Exploring a set of unlabeled data to extract the similar clusters,
known as data clustering, is an appealing problem in machine
learning. In other words, data clustering organizes the underlying
data into different groups using a notion of similarity between
patterns.
A new approach to solve the data clustering problem based on
multiple cooperative swarms is introduced. The proposed approach is
inspired by the social swarming behavior of biological bird flocks
which search for food situated in several places. The proposed
approach is composed of two main phases, namely, initialization and
exploitation. In the initialization phase, the aim is to distribute
the search space among several swarms. That is, a part of the search
space is assigned to each swarm in this phase. In the exploitation
phase, each swarm searches for the center of its associated cluster
while cooperating with other swarms. The search proceeds to converge
to a near-optimal solution. As compared to the single swarm
clustering approach, the proposed multiple cooperative swarms
provide better solutions in terms of fitness function measure for
the cluster centers, as the dimensionality of data and number of
clusters increase.
The multiple cooperative swarms clustering approach assumes that the
number of clusters is known a priori. The notion of stability
analysis is proposed to extract the number of clusters for the
underlying data using multiple cooperative swarms. The mathematical
explanations demonstrating why the proposed approach leads to more
stable and robust results than those of the single swarm clustering
are also provided.
Application of the proposed multiple cooperative swarms clustering
is considered for one of the most challenging problems in speech
recognition: phoneme recognition. The proposed approach is used to
decompose the recognition task into a number of subtasks or modules.
Each module involves a set of similar phonemes known as a phoneme
family. Basically, the goal is to obtain the best solution for
phoneme families using the proposed multiple cooperative swarms
clustering. The experiments using the standard TIMIT corpus indicate
that using the proposed clustering approach boosts the accuracy of
the modular approach for phoneme recognition considerably.
|
58 |
Investigation of service selection algorithms for grid servicesGuha, Tapashree 15 September 2009 (has links)
Grid computing has emerged as a global platform to support organizations for coordinated sharing of distributed data, applications, and processes. Additionally, Grid computing has also leveraged web services to define standard interfaces for Grid services adopting the service-oriented view. Consequently, there have been significant efforts to enable applications capable of tackling computationally intensive problems as services on the Grid. In order to ensure that the available services are assigned to the high volume of incoming requests efficiently, it is important to have a robust service selection algorithm. The selection algorithm should not only increase access to the distributed services, promoting operational flexibility and collaboration, but should also allow service providers to scale efficiently to meet a variety of demands while adhering to certain current Quality of Service (QoS) standards. In this research, two service selection algorithms, namely the Particle Swarm Intelligence based Service Selection Algorithm (PSI Selection Algorithm) based on the Multiple Objective Particle Swarm Optimization algorithm using Crowding Distance technique, and the Constraint Satisfaction based Selection (CSS) algorithm, are proposed. The proposed selection algorithms are designed to achieve the following goals: handling large number of incoming requests simultaneously; achieving high match scores in the case of competitive matching of similar types of incoming requests; assigning each services efficiently to all the incoming requests; providing the service requesters the flexibility to provide multiple service selection criteria based on a QoS metric; selecting the appropriate services for the incoming requests within a reasonable time. Next, the two algorithms are verified by a standard assignment problem algorithm called the Munkres algorithm. The feasibility and the accuracy of the proposed algorithms are then tested using various evaluation methods. These evaluations are based on various real world scenarios to check the accuracy of the algorithm, which is primarily based on how closely the requests are being matched to the available services based on the QoS parameters provided by the requesters.
|
59 |
Reverse-engineering emergent collective behaviors in an evolved swarm system /Hayward, Michael Brent. January 2003 (has links)
Thesis (Ph. D.)--University of California, San Diego, 2003. / Vita. Includes bibliographical references (leaves 270-281).
|
60 |
Mathematicle Modelling and Applications of Particle Swarm OptimizationTalukder, Satyobroto January 2011 (has links)
Optimization is a mathematical technique that concerns the finding of maxima or minima of functions in some feasible region. There is no business or industry which is not involved in solving optimization problems. A variety of optimization techniques compete for the best solution. Particle Swarm Optimization (PSO) is a relatively new, modern, and powerful method of optimization that has been empirically shown to perform well on many of these optimization problems. It is widely used to find the global optimum solution in a complex search space. This thesis aims at providing a review and discussion of the most established results on PSO algorithm as well as exposing the most active research topics that can give initiative for future work and help the practitioner improve better result with little effort. This paper introduces a theoretical idea and detailed explanation of the PSO algorithm, the advantages and disadvantages, the effects and judicious selection of the various parameters. Moreover, this thesis discusses a study of boundary conditions with the invisible wall technique, controlling the convergence behaviors of PSO, discrete-valued problems, multi-objective PSO, and applications of PSO. Finally, this paper presents some kinds of improved versions as well as recent progress in the development of the PSO, and the future research issues are also given.
|
Page generated in 0.0481 seconds