• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1331
  • 486
  • 258
  • 207
  • 60
  • 45
  • 34
  • 28
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • Tagged with
  • 2974
  • 2974
  • 476
  • 466
  • 409
  • 342
  • 283
  • 269
  • 263
  • 206
  • 200
  • 193
  • 192
  • 188
  • 188
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Physical phenomena of thin surface layers

Thomas, Katherine Ruth January 2010 (has links)
This thesis explores different physical phenomena observed in, or involving thin surface films. Thin surface layers are ubiquitous. Found in nature and used in almost every aspect of daily life, thin surface films are invaluable. While the applications and roles may be varied, to be used effectively, the physical properties of these films and the factors influencing their stability need to be well understood. Surfaces can have a strong effect on the stability of thin films. In thin films of polymer blends, wetting layers rich in one component often form at the film interface prior to phase separation. Here the formation of these wetting layers are seen to result in destabilisation of the film, even when the blend is far from phase coexistence. A spinodal like instability with a characteristic wavelength is shown to form. A theoretical model is developed, which describes the observed behaviour in terms of coupled height and composition fluctuations in the wetting layer. Spin coating is a common technique for the formation of thin polymer films. Films formed in this way however, are often seen to exhibit anomalous properties, which strongly differ from that of the bulk behaviour of the material. Here the rheological properties and stored stresses in spin cast films are explored, with focus on the role that the casting solvent plays in the properties of the film. The results suggest that the observed deviation comes from a lowered density of chain entanglements. The effective viscosity and residual stresses in the as-spun film are seen to strongly depend on the casting solvent properties and the solvent-polymer interactions. The use of organometallic polymers as precursors for the formation of magnetic ceramics is investigated. Emphasis is placed on doping the polymers with metallic compounds prior to pyrolysis, allowing for the formation of technologically interesting metallic alloys, without the need for new polymers to be synthesised. The formation of iron-palladium alloys is demonstrated using this method. These are highly desirable due to their potential use in hard-disk drive technologies. Thin films can be used to influence the optical signature of a material and are widely used in nature to produce vibrant, pure, iridescent colours. Here the optical properties of the tropical plant Selaginella willdenowii are explored. The bright blue colouration is seen to arise from a multilayer lamella structure on the upper surface of the leaves. Light is important to plants, who use it both as an energy source and an environmental signal. Blue iridescence occurs in a wide range of plant species, suggesting that it has some adaptive benefit. These are considered and discussed.
142

Structure and properties of sputtered ZnO transducers.

Fahmy, Aly Hassan. January 1971 (has links)
No description available.
143

Nanometer scale electrical characterization of thin dielectric films /

Lee, David Timothy. January 2002 (has links)
No description available.
144

The behavior and misfit dislocations during interdiffusion /

Shinohara, Kazumitsu January 1972 (has links)
No description available.
145

Field ion microscopic study of films of molybdenum, platinum and tantalum vapor deposited on tungsten /

Boateng, Antwi January 1974 (has links)
No description available.
146

Surface torques and their effects on the boundary parameters in ferromagnetic insulator thin films /

Summers, Herbert Richard January 1979 (has links)
No description available.
147

Characterization of Boron Nitride Thin Films on Silicon (100) Wafer.

Maranon, Walter 08 1900 (has links)
Cubic boron nitride (cBN) thin films offer attractive mechanical and electrical properties. The synthesis of cBN films have been deposited using both physical and chemical vapor deposition methods, which generate internal residual, stresses that result in delamination of the film from substrates. Boron nitride films were deposited using electron beam evaporation without bias voltage and nitrogen bombardment (to reduce stresses) were characterize using FTIR, XRD, SEM, EDS, TEM, and AFM techniques. In addition, a pin-on-disk tribological test was used to measure coefficient of friction. Results indicated that samples deposited at 400°C contained higher cubic phase of BN compared to those films deposited at room temperature. A BN film containing cubic phase deposited at 400°C for 2 hours showed 0.1 friction coefficient.
148

Vertically Aligned Nanocomposite Thin Films

Bi, Zhenxing 2011 May 1900 (has links)
Vertically aligned nanocomposite (VAN) thin films have recently stimulated significant research interest to achieve better material functionality or multifunctionalities. In VAN thin films, both phases grow epitaxially in parallel on given substrates and form a unique nano-checkerboard structure. Multiple strains, including the vertical strain which along the vertical interface and the substrate induced strain which along the film and substrate interface, exist in VAN thin films. The competition of these strains gives a promise to tune the material lattice structure and future more the nanocomposite film physical properties. Those two phases in the VAN thin films are selected based on their growth kinetics, thermodynamic stability and epitaxial growth ability on given substrates. In the present work, we investigated unique epitaxial two-phase VAN (BiFeO3)x:(Sm2O3)1-x and (La0.7Sr0.3MnO3)x:(Mn3O4)1-x thin film systems by pulsed laser deposition. These VAN thin films exhibit a highly ordered vertical columnar structure with good epitaxial quality. The strain of the two phases can be tuned by deposition parameters, e.g. deposition frequency and film composition. Their strain tunability is found to be related directly to the systematic variation of the column widths and domain structures. Their physical properties, such as dielectric loss and ferromagnetisms can be tuned systematically by this variation. The growth morphology, microstructure and material functionalities of VAN thin films can be varied by modifying the phase ratio, substrate orientation or deposition conditions. Systematic study has been done on growing (SrTiO3)0.5:(MgO)0.5 VAN thin films on SrTiO3 and MgO substrates, respectively. The variation of column width demonstrates the substrate induced strain plays another important role in the VAN thin film growth. The VAN thin films also hold promise in achieving porous thin films with ordered nanopores by thermal treatment. We selected (BiFeO3)0.5:(Sm2O3)0.5 VAN thin films as a template and get uniformly distributed bi-layered nanopores. Controllable porosity can be achieved by adjusting the microstructure of VAN (BiFeO3):(Sm2O3) thin films and the annealing parameters. In situ heating experiments within a transmission electron microscope column provide direct observations into the phases transformation, evaporation and structure reconstruction during the annealing. Systematic study in this dissertation demonstrate that the vertically aligned nanocomposite microstructure is a brand new architecture in thin films and an exciting approach that promises tunable material functionalities as well as novel nanostructures.
149

Phase separation in carbon:transition metal nanocomposite thin films

Berndt, M. 16 September 2010 (has links) (PDF)
kein Abstract vorhanden
150

Multi-level modeling of total ionizing dose in a-SiO₂ first principles to circuits /

Nicklaw, Christopher J. January 2003 (has links)
Thesis (Ph. D. in Electrical Engineering)--Vanderbilt University, Aug. 2003. / Title from title screen. Includes bibliographical references.

Page generated in 0.0466 seconds